Prolon Control Systems

PZM4146 Software Users Guide Version 1 Draft 12 Feb. 2004

1 So	ftware functions	4
1.1 Ge	eneral purpose function profiles:	5
1.1.1	Scene Controller (3251), 6 objects	
1.1.2	Occupancy Sensor (1060), 2 objects	
1.1.3	Occupancy Controller (3071), 6 objects	
1.1.4	Partition Wall Controller (3252), 2 objects	
1.1.5	Digital Functional Block, 4 objects	22
1.1.6	Analog Functional Block, 4 objects	
1.2 Li	ghting profiles:	
1.2.1	Light Sensor Input (1010), 2 objects	
1.2.2	Lamp Actuator (3040), 6 objects	
1.2.3	Constant Light Controller (3050), 4 objects	43
1.3 Sp	ace Comfort profiles:	
1.3.1	HVAC Temperature Sensor Input (1040), 2 objects	
1.3.2	Space Comfort Controller (8500), 2 objects	
1.3.3	Heat Actuator (3:20011), 2 objects	65
1.3.4	Cool Actuator (3:20011), 2 objects	70
1.3.5	Ventilation Actuator (3:20011), 2 objects	75
1.3.6	Indoor Air Quality Controller (3:20018), 2 objects	
Sunblind	profiles:	
1.3.7	Sunblind Actuator (3:20000), 2 objects	
1.4 Co	onverter Profiles	
1.4.1	Switch to setting converter (3:20016) 6 objects	
~ •	•• •• •• ••	$\sim -$
2 AD	olications and bindings	87
2 Ap	plications and bindings	
2.1 M	anual Control, Light Bindings	
2.1 M 2.1.1	anual Control, Light Bindings Simple on and off	87 87
2.1 M 2.1.1 2.1.2	anual Control, Light Bindings Simple on and off Simple on and off with feed back	
2.1 M 2.1.1 2.1.2 2.1.3	anual Control, Light Bindings Simple on and off Simple on and off with feed back Multi on and off with feed back	
2.1 M 2.1.1 2.1.2 2.1.3 2.1.4	anual Control, Light Bindings Simple on and off Simple on and off with feed back Multi on and off with feed back Simple on and off with multi actuators 1.	
2.1 M 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	anual Control, Light Bindings Simple on and off Simple on and off with feed back Multi on and off with feed back Simple on and off with multi actuators 1 Simple on and off with multi actuators 2	
2.1 M 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6	anual Control, Light Bindings Simple on and off. Simple on and off with feed back. Multi on and off with feed back. Simple on and off with multi actuators 1. Simple on and off with multi actuators 2. Multi on and off with multi actuators 1.	
2.1 M 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7	anual Control, Light Bindings Simple on and off Simple on and off with feed back. Multi on and off with feed back. Simple on and off with multi actuators 1. Simple on and off with multi actuators 2. Multi on and off with multi actuators 1. Multi on and off with multi actuators 2.	87 87 87 87 87 87 87 87 88 88 88
2.1 M 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.2 Oc	anual Control, Light Bindings Simple on and off Simple on and off with feed back Multi on and off with feed back Simple on and off with multi actuators 1 Simple on and off with multi actuators 2 Multi on and off with multi actuators 1 Multi on and off with multi actuators 2 Multi on and off with multi actuators 2	87 87 87 87 87 87 87 87 87 88 88 88 88
2.1 M 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7	anual Control, Light Bindings Simple on and off Simple on and off with feed back Multi on and off with feed back Simple on and off with multi actuators 1 Simple on and off with multi actuators 2 Multi on and off with multi actuators 1 Multi on and off with multi actuators 2 Cocupancy automatic, Light Bindings Occupancy on off.	87 87 87 87 87 87 87 87 87 88 88 88 88 8
2.1 M 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.2 O 2.2.1 2.2.2	anual Control, Light Bindings Simple on and off Simple on and off with feed back Multi on and off with feed back Simple on and off with multi actuators 1 Simple on and off with multi actuators 2 Multi on and off with multi actuators 1 Multi on and off with multi actuators 2 ccupancy automatic, Light Bindings Occupancy on off Occupancy on off, with manual override.	87 87 87 87 87 87 87 87 88 88 88 88 88 8
2.1 M 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.2 Oc 2.2.1	anual Control, Light Bindings Simple on and off Simple on and off with feed back Multi on and off with feed back Simple on and off with multi actuators 1 Simple on and off with multi actuators 2 Multi on and off with multi actuators 1 Multi on and off with multi actuators 2 ccupancy automatic, Light Bindings Occupancy on off Occupancy on off, manual override Occupancy on off, manual override and manual control LED	87 87 87 87 87 87 87 87 88 88 88 88 88 8
2.1 M 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.2 O 2.2.1 2.2.2 2.2.3	anual Control, Light Bindings Simple on and off Simple on and off with feed back Multi on and off with feed back Simple on and off with multi actuators 1 Simple on and off with multi actuators 2. Multi on and off with multi actuators 1 Multi on and off with multi actuators 2. ccupancy automatic, Light Bindings Occupancy on off Occupancy on off, manual override. Occupancy on off, manual override and manual control LED Occupancy and neighbour occupancy on off.	87 87 87 87 87 87 87 87 88 88 88 88 88 8
2.1 M 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.2 O 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	anual Control, Light Bindings Simple on and off Simple on and off with feed back Multi on and off with feed back Simple on and off with multi actuators 1 Simple on and off with multi actuators 2 Multi on and off with multi actuators 1 Multi on and off with multi actuators 2 Ccupancy automatic, Light Bindings Occupancy on off Occupancy on off, manual override Occupancy on off, manual override and manual control LED Occupancy and neighbour occupancy on off and manual override	87 87 87 87 87 87 87 87 88 88 88 88 88 8
2.1 M 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.2 O 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	anual Control, Light Bindings Simple on and off Simple on and off with feed back Multi on and off with feed back Simple on and off with multi actuators 1 Simple on and off with multi actuators 2 Multi on and off with multi actuators 1. Multi on and off with multi actuators 2. Ccupancy automatic, Light Bindings Occupancy on off. manual override Occupancy on off, manual override and manual control LED Occupancy and neighbour occupancy on off and manual override Occupancy, neighbour occupancy on off and manual override onstant light automatic, Light Bindings	87 87 87 87 87 87 87 87 88 88 88 88 88 8
2.1 M 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.2 O 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.3 Co	anual Control, Light Bindings Simple on and off Simple on and off with feed back. Multi on and off with feed back. Simple on and off with multi actuators 1. Simple on and off with multi actuators 2. Multi on and off with multi actuators 1. Multi on and off with multi actuators 2. ccupancy automatic, Light Bindings. Occupancy on off. Occupancy on off, manual override. Occupancy on off, manual override and manual control LED. Occupancy and neighbour occupancy on off and manual override. Occupancy, neighbour occupancy on off and manual override. Onstant light automatic, Light Bindings.	87 87 87 87 87 87 87 88 88 88 88 88 88 8
2.1 M 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.2 O 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.3 C 2.3.1	anual Control, Light Bindings	87 87 87 87 87 87 87 88 88 88 88 88 88 8
2.1 M 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.2 O 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.3 C 2.3.1 2.3.2	anual Control, Light Bindings Simple on and off Simple on and off with feed back. Multi on and off with feed back. Simple on and off with multi actuators 1. Simple on and off with multi actuators 2. Multi on and off with multi actuators 2. Multi on and off with multi actuators 2. Ccupancy automatic, Light Bindings. Occupancy on off. Occupancy on off, manual override. Occupancy on off, manual override and manual control LED. Occupancy and neighbour occupancy on off and manual override. Occupancy, neighbour occupancy on off and manual override. Onstant light automatic, Light Bindings. Constant light basis automatic. Constant light with slave output. Constant light and occupancy control.	87 87 87 87 87 87 87 88 88 88 88 88 88 8
2.1 M 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.2 O 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.3 C 2.3.1 2.3.2 2.3.3	anual Control, Light Bindings	87 87 87 87 87 87 87 88 88 88 88 88 88 8

2.3.6	Partition Wall and scene	93
2.3.7	Partition Wall and switch	93
2.3.8	Partition wall and occupancy	93
2.4 Spa	ce Comfort	
2.4.1	Heating	94
2.4.2	Cooling	94
2.4.3	Ventilation with occupancy control	94
2.4.4	Heat and cool with occupancy automatic	
2.4.5	Heat, cool and ventilation with occupancy automatic	95
2.5 Inde	oor air quality	95
2.5.1	CO2 controlled ventilation	95
2.5.2	CO2 controlled ventilation with occupancy automatic	95
2.5.3	CO2 controlled ventilation combined with space comfort controller	
3 Figu	ure list	97

1 Software functions.

The following section is describing the software function profiles implemented in the Lonbox Comfort and Light Controller model PZM4146.

The PZM4146 is designed to fulfil the requirement for operating and controlling lighting, heating, cooling, ventilation and sunblind or windows in modern Intelligent Building Installations, using the LonWorks network standard ANSI/EIA/CEN 709.1 or as a stand-alone unit.

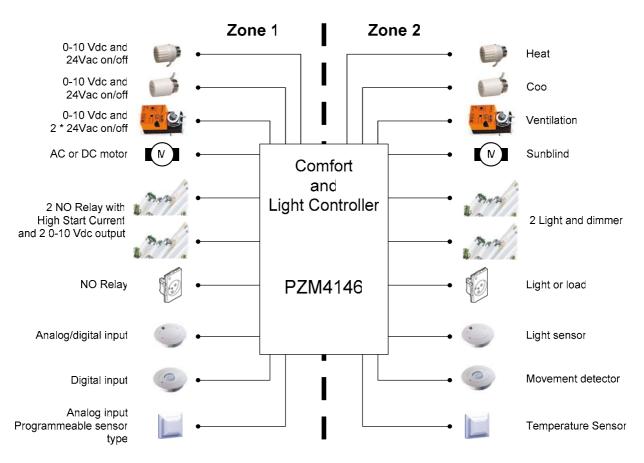


Figure 1 The main application for PZM4146

1.1 General purpose function profiles:

The following is describing the general purpose software functions implemented in the Lonbox Comfort and Light Controller model PZM4146.

1.1.1 Scene Controller (3251), 6 objects

The scene controller object is used to control scenes. Input from an event triggering source e.g. a scene panel or Building Management System (BMS) different scene numbers will be triggered. Scene values are stored in the controller memory. Scene setup is done by sending values or storing current values under a given scene number. Current values are obtained internally. Stored values are reported using scene configuration feedback output.

A scene panel output is normally connected to the scene controller input and each lamp or groups of lamps have their own Scene controller.

Controller #	Name in LonMaker list
1	SceneControl_1
2	SceneControl_2
3	SceneControl_3
4	SceneControl_4
5	SceneControl_5
6	SceneControl_6

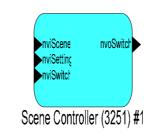


Figure 2 The scene controller object

👋 LonMaker Bro	wser - Untitled			
<u>File E</u> dit <u>B</u> rowse	e <u>H</u> elp			
B	₩ 🕐 🕀 🗲		* * 1	
Network Variable	Config Prop	Mon	Value	
	UCPTsceneNumber	N	1	
nviScene		N	SC_RECALL 0	
nviSetting		N	SET_OFF 0,0 0,00	
nviSwitch		N	0,0 0	
nvoSwitch		N	0,0 0	
nvoSwitch	UCPTsceneValue	N	0,0 0	
				-
Ready			1	

Figure 3. Browsing the scene controller object

1.1.1.1 Network Variable Interface

Variable name	Default Value	Туре	Description
nviScene	SC_RECALL 0	SNVT_scene (115)	Scene trigger input
nviSetting	SET_OFF 0,0 0,00	SNVT_setting (117)	Setting control function
nviSwitch	0,0 0	SNVT_switch (95)	Direct control input
nvoSwitch	0,0 0	SNVT_switch (95)	Control output

1.1.1.1.1 nviScene

This input network variable triggers a scene or loads the scene preset memory with current values. If the recalled scene number is not found in the preset memory, the controller takes no action.

1.1.1.1.1 Valid Range

The valid enumeration is RECALL with associated scene number (1 to 255). Scene number 0 is not used.

1.1.1.1.1.2 Configuration Considerations

This network variable is subject to the receive heartbeat time, nciRcvHrtBt.

1.1.1.1.2 nviSetting

This input network variable selects the operating mode of the controller. The operating modes are: ON or OFF

The ON mode turns on the controller which then starts to control the lamp value output triggered by the incoming scene trigger nviScene. The OFF mode turns off the controller and the lamp value output.

1.1.1.1.3 nviSwitch

This optional input network variable provides a direct control method for the output (nvoSwitch). This input overrides other inputs or ongoing fades. It can be used for scene adjusting when "learn current" function is used.

The valid range of the state is as defined for nviSwitch where 0 means OFF and 1 means ON. The 8-bit intensity value contains a value from 0 to 200, representing minimum to maximum (0%-100% in steps of 0.5%) intensity. A state value of 0xFF indicates the switch value is undefined

1.1.1.1.4 nvoSwitch

This output network variable provides the switch output for an actuator triggered by the scene.

1.1.1.1.4.1 Valid Range

The valid range of the state is as defined for nviSwitch where 0 means OFF and 1 means ON. The 8-bit intensity value contains a value from 0 to 200, representing minimum to maximum (0%-100% in steps of 0.5%) intensity. A state value of 0xFF indicates the switch value is undefined

1.1.1.2 Configuration Properties

Configuration	Default Value	Description
UCPTsceneNumber ()	1	
UCPTsceneValue ()	0,00	

1.1.1.2.1 UCPTsceneNumber

The UCPTsceneNumber is a configuration table property. The table is used to configure which input scene number, there will use a specific index number in the scene controller. Related to the fixed index number from UCPTsceneNumber(0) to UCPTsceneNumber(9) you can configure which scene that shall trigger this index number.

I the below windows list, you can see that input scene 1 uses index (0) and that scene 12 uses index (7).

Comfort & Ligth Domicil.Pl	an 1.ROOM 348/PZM4146 1V01/Scene Controlle	1	Cancel
hange data here for sele	cted entry:		
14			Apply
			, Help
	UCPTsceneNumber		
UCPTsceneNumber[0]		1	
UCPTsceneNumber[1]		2	
UCPTsceneNumber[2]		3	
UCPTsceneNumber[3]		4	
UCPTsceneNumber[4]		5	
UCPTsceneNumber[5]		10	
UCPTsceneNumber[6]		11	
UCPTsceneNumber[7]		12	
UCPTsceneNumber[8]		13	
UCPTsceneNumber[9]		14	

Find the relation between the scene number index and the scene value index in the next section describing the configuration property UCPTsceneValue.

1.1.1.2.2 UCPTsceneValue

The UCPTsceneValue is a configuration table property. The table is used to configure a SNVTswitch value related to a specific switch index number. Related to the fixed index number from SNVT_switch(0) to SNVT_switch(9) you can configure the SNVTswitch value and state for each index number.

I the below windows list, you can see that index SNVT_switch(1) is configured to 25% and state 1 and that index SNVT_switch(3) is configured to 75% and state 1.

<u>)</u> bject Name:	440.45/04/00-00-00-00-00-00-00-00-00-00-00-00-00-	OK		
-	146 1 V01/Scene Controlle	Cance	el	
<u>change data here for se</u>	elected entry:		0 mm/r	
0,0			Apply	1
			Help	
	value	state		
SNVT_switch[0]	0,0		0	
SNVT_switch[1]	25,0		1	
SNVT_switch[2]	50,0		1	
SNVT_switch[3]	75,0		1	
SNVT_switch[4]	100,0		1	
SNVT_switch[5]	0,0		0	
SNVT_switch[6]	0,0		0	
SNVT_switch[7]	0,0		0	
SNVT_switch[8]	0,0		0	
SNVT_switch[9]	0,0		0	

The combination using the two index's gives a very high flexibility when configuring the scene controller. In the below list is showed the fixed relation between the two index's,

UCPTsceneNumber(X) and SNVT_switch(X). As you can see in the below table, will input scene number 3 relate to index UCPTsceneNumber(2). This relation will trigger that, the controller will use the value from index SNVT_switch(2) and send 50% and state 1 out on the nvoSwitch output variable.

UCP	TsceneNumber	UCPTsceneValue		
Index	Scene Number	Index	Switch %	State
[0]	1	[0]	0,0	0
[1]	2	[1]	25,0	1
[2]	3	[2]	<u>50,0</u>	<u>1</u>
[3]	4	[3]	75,0	1
[4]	5	[4]	100,0	1
[5]	10	[5]	0	0
[6]	11	[6]	0	0
[7]	12	[7]	0	0
[8]	13	[8]	0	0
[9]	14	[9]	0	0

1.1.2 Occupancy Sensor (1060), 2 objects

The following describes the function for the occupancy sensor object. This object is used with a hardware sensor whose output is either in an occupied or unoccupied state. The occupancy sensor object is used to detect occupancy in a room or an area and keep the occupied state until no occupancy can be detected. The output from the occupancy sensor object is typically connected to a controller. The occupancy controller takes care of the proper action and calculates application delay or hold times as appropriate.

PIR #	Connector #	Name in LonMaker list
1	37.1	OccupSensor_1
2	37.2	OccupSensor_2

Figure 2 The occupancy hardware input

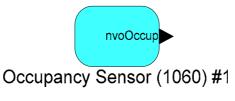


Figure 4 The occupancy sensor object

👋 LonMaker Bro	wser - Untitled			×	
File Edit Browse Help					
B	₩ 🕐 🕀 🗲		\$ \$ 5,0		
Network Variable	Config Prop	Mon	Value		
	SCPTdebounce	N	5,0		
	SCPTinvrtOut	N	ST_OFF		
	SCPTmaxSendTime	N	120,0		
	SCPTovrValue	N	OC_UNOCCUPIED		
nvoOccup		N	OC_UNOCCUPIED		
				-	
Ready			1	1	

Figure 5 Browsing the occupancy sensor object

1.1.2.1 Network Variable Interface

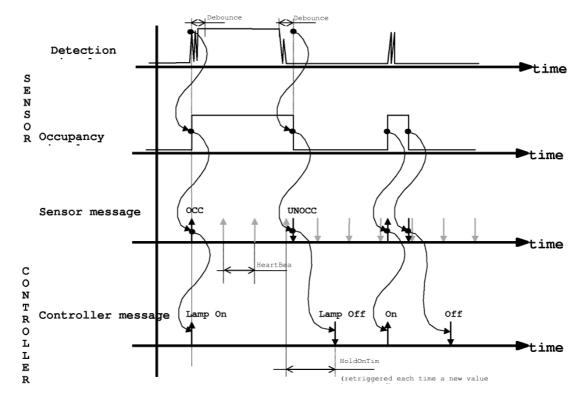
Variable name	Default Value	Туре	Description
nvoOccup	OC_UNOCCUPIED	SVNT_occupancy (109)	Sensor output

1.1.2.1.1 nvoOccup

This output network variable provides the qualified state of the hardware sensor output connected to the Comfort and Ligth Controller. The sensor input can be inverted with the configuration property SCPTinvrtOut.

The variable is transmitted when the occupancy state changes from unoccupied to occupied or when the occupancy state has changed from occupied to unoccupied at the frequency of the heartbeat. The maximum update rate is fixed by the heartbeat frequency and the minimum update rate is fixed by the debouncing time. The default service type is acknowledged.

Configuration	Default Value	Description
SCPTdebounce (139)	5,0	Debounce filter time
SCPTinvrtOut (16)	ST_OFF	Invert the output
SCPTmaxSendTime (49)	120,0	Heartbeat time
SCPTovrValue (33)	OC UNOCCUPIED	State when in override mode


1.1.2.2 Configuration Properties

1.1.2.2.1 SCPTdebounce

This mandatory configuration network variable defines the debounce time to generate the detection envelop and the OCCUPIED and NON OCCUPIED messages. Valid range is 0.0 - 6553.4 by steps of 0.1s.

The following timing diagram defines the different timers used in the profile, it illustrate the debounce filter function.

1.1.2.2.2 SCPTinvrtOut

The SCPTinvrtOut configuration property is used to invert the the input signa, so sensor with normal close also can be used.

The property is either:

SCPTinvrtOut		
ST_OFF Not inverted input		
ST_ON Inverted input		

1.1.2.2.3 SCPTmaxSendTime

SCPTmaxSendTime is a configuration property. This configuration defines the repeat period between to value update sent on the bus also called a heartbeat. The aims of the heartbeat is to be sure that the sensor is alive and to permit a controller to have multiple sensors on the same input

Remark : Even if the heartbeat is optional, the heartbeat functionality shall be implemented in the Occupancy Sensor with a 2 minutes repeat period, (default value).

1.1.2.2.4 SCPTovrValue

This override value sets the value the actuator should adopt when the object is overridden and behavior is OV_SPECIFIED.

1.1.3 Occupancy Controller (3071), 6 objects

The following section is describing the occupancy controller. Typically the occupancy controller input is connected to the occupancy sensor and the output to a lamp. A switch can be used to turn the occupancy controller into ON and OFF mode. An additional switch can override the controller and directly control the lamp. The occupancy controller can also be driven by an occupancy sensor from a neighboring area, secondary input. The secondary function gives the users a secure feeling, due to the light around. The occupancy controller can also operate another controller, eg. a constant light controller.

Controller#	Name in LonMaker list
1	OccupancyCtrl_1
2	OccupancyCtrl_2
3	OccupancyCtrl_3
4	OccupancyCtrl_4
5	OccupancyCtrl_5
6	OccupancyCtrl_6

Figure 6 The Occupancy controller object

💞 LonMaker Browser - Untitled 📃 📃				
<u>File E</u> dit <u>B</u> rowse	<u>H</u> elp			
≌∎⊜	묦 🕐 🖶		120,0	
Network Variable	Config Prop	Mon	Value	
	SCPTholdTime	N	120,0	
	SCPTprimeVal	N	100,01	
	SCPTsecondVal	N	60,01	
	UCPTautoTurnOff	N	BOOL_TRUE	
	UCPTautoTurnOn	N	BOOL_TRUE	
	UCPTmanualTime	N	600,0	
nviManOverid		N	0,0 0	
nviOccupancy		N	OC_NUL	
nviSecondary		N	OC_OCCUPIED	
nviSetting		N	SET_OFF 0,0 0,00	
nvoEffectManuel		N	0,0 0	
nvoLampValue		N	0,0 0	
nvoSetting		N	SET_OFF 0,0 0,00	
				-
Enter new value for selected object				

Figure 7 Browsing the occupancy controller object

1.1.3.1 Network Variable Interface

Variable name	Default Value	Туре	Description
nviManOverride	0,0 0	SNVT_switch (95)	Manual Operation
nviOccupancy	OC_NUL	SVNT_occupancy (109)	Occupancy input
nviSecondary	OC_UNOCCUPIED	SVNT_occupancy (109)	Neighbourhood Occupancy input
nviSetting	SET_OFF 0,0 0,00	SNVT_setting (117)	Setting control input
nvoEffectManuel	0,0 0	SNVT_switch (95)	Manual indicator output
nvoLampValue	0,0 0	SNVT_switch (95)	Controller output
nvoSetting	SET_OFF 0,0 0,00	SNVT_setting (117)	Setting control output

1.1.3.1.1 nviManOverride

Manual override input, enables the local and manual control of the lamp value output.

1.1.3.1.2 nviOccupancy

Occupancy status input value, provides the occupancy status for the area.

1.1.3.1.3 nviSecondary

Secondary occupancy status input value. It provides the occupancy status of a neighbourhood area, in order to provide low-level lighting around an occupied area for a feeling of security.

1.1.3.1.4 nviSetting

Setting input (Auto/Off). This mode can be either be ON(AUTO) or OFF.

1.1.3.1.5 nvoEffectManuel

This output variable reflect the status of manual override.

1.1.3.1.6 nvoLampValue

Lamp value output. State for the lamp actuator ON or OFF, and the percentage level of intensity.

1.1.3.1.7 nvoSetting

Setting output. Select the operating mode for another controller, e.g., constant light controllers.

Configuration	Default Value	Description			
SCPTholdTime (91)	600	Occupancy delay timer			
SCPTprimeVal (155)	100,0 1	Output value when occupied			
SCPTsecondVal (156)	60,0 1	Output for Value neighboring			
UCPTautoTurnOff	BOOL TRUE	Turn off selection, true or false			
UCPTautoTurnOn	BOOL TRUE	Turn on selection, true or false			
UCPTmanualTime	600	Delay timer when manual control			

1.1.3.2 Configuration Properties

1.1.3.2.1 SCPTholdTime

Hold time for occupied state after there is no occupancy detected. This timer is used for both the main occupancy input and for the secondary input.

1.1.3.2.2 SCPTprimeVal

The default output value when an area is occupied.

1.1.3.2.3 SCPTsecondVal

The default output value when the neighboring area is occupied, when the secondary occupancy sensor input variable is active.

1.1.3.2.4 UCPTautoTurnOff

This configuration property is used to select if the controller automatically switch off the output when it time out the timer.

UCPTautoTurnOff	Description
BOOL_TRUE	Automatic off activated
BOOL_FALSE	No automatic off activated

1.1.3.2.5 UCPTautoTurnOn

This configuration property is used to select if the controller automatically switch on the output when occupancy is detected.

UCPTautoTurnOn	Description
BOOL_TRUE	Automatic on activated
BOOL_FALSE	No automatic on activated

1.1.3.2.6 UCPTmanualTime

This configuration property is used to set the timer value used during a manual override input on the nviManOverride. The manual timer is also serviced by the occupancy input and will be set every time an occupancy signal is received. Hereafter the timer will countdown and when it times out manual override will be deactivated.

1.1.4 Partition Wall Controller (3252), 2 objects

The Partition Wall Controller is used in spaces that can be divided into smaller sections. The object passes data to the area next to it, if the space is open (no partitioning). If the space is divided, then light-switch data is not passed to the other side of the separating wall.

The LonMark PartitionWall Controller is based only on Scenes. The Prolon Control Systems version expand the controller to both Scene, Occupancy and Switch.

Controller#	Name in LonMaker list	
1	PartWallCtrl_1	
2	PartWallCtrl_2	

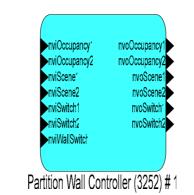


Figure 8 The Partition wall controller object

💞 LonMaker Browser - Untitled 📃 🗆 🔀					
B	₩ 🕐 🕀 🖶		1 		
Network Variable	Config Prop	Mon	Value		
	SCPTsceneOffset	N	0		
nviOccupancy1		N	OC_OCCUPIED		
nviOccupancy2		N	OC_OCCUPIED		
nviScene1		N	SC_RECALL 0		
nviScene2		N	SC_RECALL 0		
nviSwitch1		N	0,0 0		
nviSwitch2		N	0,0 0		
nviWallSwitch		N	0,0 0		
nvoOccupancy1		N	OC_OCCUPIED		
nvoOccupancy2		N	OC_OCCUPIED		
nvoScene1		N	SC_RECALL 0		
nvoScene2		N	SC_RECALL 0		
nvoSwitch1		N	0,0 0		
nvoSwitch2		N	0,0 0		
				-	
Ready 1					

Figure 9 Browsing the partition wall controller object

1.1.4.1 Network Variable Interface

Variable name	Default Value	Туре	Description
nviWallSwitch	0,0 0	SNVT_switch (95)	Partition wall switch input
nviScene1	SCENE_RECALL 0	SNVT_scene (115)	Primary input
nviScene2	SCENE_RECALL 0	SNVT_scene (115)	Secondary input
nviOccupancy1	OC_OCCUPIED	SVNT_occupancy (109)	Primary input
nviOccupancy2	OC_OCCUPIED	SVNT_occupancy (109)	Secondary input
nviSwitch1	0,0 0	SNVT_switch (95)	Primary input
nviSwitch2	0,0 0	SNVT_switch (95)	Secondary input
nvoScene1	SCENE_RECALL 0	SNVT_scene (115)	Primary output
nvoScene2	SCENE_RECALL 0	SNVT_scene (115)	Secondary output
nvoOccupancy1	OC_OCCUPIED	SVNT_occupancy (109)	Primary output
nvoOccupancy2	OC_OCCUPIED	SVNT_occupancy (109)	Secondary output
nvoSwitch1	0,0 0	SNVT_switch (95)	Primary output
nvoSwitch2	0,0 0	SNVT_switch (95)	Secondary output

1.1.4.1.1 nviWallSwitch

Partition wall switch input. The valid range of the input is, partition open state=ON and partition closed state=OFF. Other enumerations of the state are discarded; value field has no effect.

1.1.4.1.2 nviScene1

Primary side scene input. Read in data from the scene panels and other sensors on the primary side of the partition wall.

1.1.4.1.3 nviScene2

Secondary side scene input. Read in data from the scene panels and other sensors, of the secondary side of the partition wall.

1.1.4.1.4 nviOccupancy1

Primary side occupancy input. Read in data from the occupancy sensors on the primary side of the partition wall.

1.1.4.1.5 nviOccupancy2

Secondary side occupancy input. Read in data from the occupancy sensors on the secondary side of the partition wall.

1.1.4.1.6 nviSwitch1

Primary side Switch input. Read in data from the switch panels and other sensors on the primary side of the partition wall.

1.1.4.1.7 nviSwitch2

Secondary side switch input. Read in data from the switch panels and other sensors, of the secondary side of the partition wall.

1.1.4.1.8 nvoScene1

Primary side scene output. Provide the scene output to the scene controllers on the primary side of the partition wall.

1.1.4.1.9 nvoScene2

Secondary side scene output. Provide the scene output to the scene controllers on the secondary side of the partition wall.

1.1.4.1.10 nvoOccupancy1

Primary side occupancy output. Provide the occupancy output to the occupancy controllers on the primary side of the partition wall.

1.1.4.1.11 nvoOccupancy2

Secondary side occupancy output. Provide the occupancy output to the occupancy controllers on the secondary side of the partition wall.

1.1.4.1.12 nvoSwitch1

Primary side switch output. Provide the switch output on the primary side of the partition wall.

1.1.4.1.13 nvoSwitch2

Secondary side switch output. Provide the switch output on the secondary side of the partition wall.

1.1.4.2 Configuration Properties

Configuration	Default Value	Description
SCPTsceneOffset ()	0	Scene offset from primary to
		secondary side

1.1.4.2.1 SCPTsceneOffset

The scene offset configuration property, is used to set the offset for scene number, when data is forwarded from primary to secondary side of the partition wall controller.

1.1.5 Digital Functional Block, 4 objects

The digital function object is used to make logical functions as AND, OR, NAND and NOR gates. In a simple configuration it can be used to invert a signal, both input and output can be inverted. The object can also be used as a latch gate and a relay function. The gate function have two input and one output.

The logical function object help the system integrator with quick and easy changes and new functions without requiring a new firmware for the products in the network.

Digital function#	Name in LonMaker list
1	DigitalFunc_1
2	DigitalFunc_2
3	DigitalFunc_3
4	DigitalFunc_4

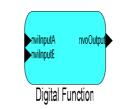


Figure 10 The digital function object

💞 LonMaker Browser - Untitled 📃 🔲				×
<u>File E</u> dit <u>B</u> rowse <u>H</u> elp				
F	₩ 🕐 🕀 🗲		\$ \$ 0,00	
Network Variable	Config Prop	Mon	Value	
	SCPTovrValue	N	0,00	
	UCPTdigitalFunction	N	DFT_AND	
nvilnputA		N	0,0 0	
nvilnputA	SCPTmaxRcvTime	N	0,0	
nvilnputA	UCPTdefaultIn	N	0,00	
nvilnputA	UCPTinvertInput	N	BOOL_FALSE	
nvilnputB		N	0,0 0	
nvilnputB	SCPTmaxRcvTime	N	0,0	
nvilnputB	UCPTdefaultIn	N	0,00	
nvilnputB	UCPTinvertInput	N	BOOL_FALSE	
nvoOutput		N	0,0 0	
nvoOutput	SCPTmaxSendTime	N	0,0	
nvoOutput	UCPTinvertOutput	N	BOOL_FALSE	
nvoOutput	UCPTmaxOnTime	N	0,0	
nvoOutput	UCPTminOnTime	N	0,0	-
Ready			1	1

Figure 11 Browsing the digital function object

1.1.5.1 Network Variable Interface

Variable name	Default Value	Туре	Description
nviInputA	0,0 0	SNVT_switch (95)	Gate input A
nviInputB	0,0 0	SNVT_switch (95)	Gate input B
nvoOutput	0,0 0	SNVT_switch (95)	Gate output

1.1.5.1.1 nviInputA

This input variable is the A input to the gate function. The input switch variable is used as a digital indicator. Logic 0 = 0.0 % state 0, any other combinations are logic 1.

1.1.5.1.2 nviInputB

This variable is the B input to the gate function. The input switch variable is used as a digital indicator. Logic 0 = 0.0 % state 0, any other combinations are logic 1

1.1.5.1.3 nvoOutput

This variable is the output from the gate function, it's a SNVT_switch type variable. Logic 0 = 0.0% state 0. Logic 1 = 100% state 1.

1.1.5.2 Configuration Properties

Configuration	Default Value	Description
SCPTovrValue (33)	0,00	State when in override mode
SCPTmaxRcvTime (48), nviInputA	0,0	Maximum receive time
SCPTmaxRcvTime (48), nviInputB	0,0	Maximum receive time
SCPTmaxSendTime (49)	0,0	Maximum send time
UCPTdigitalFunction (3:86)	DFT_AND	Set the function metode
UCPTdefaultIn, nviInputA	0,00	Set a fixed input value
UCPTdefaultIn, nviInputB	0,00	Set a fixed input value
UCPTinvertInput, nviInputA	BOOL_FALSE	Invert the input A
UCPTinvertInput, nviInputB	BOOL_FALSE	Invert the input B
UCPTinvertOutput	BOOL_FALSE	Invert the output
UCPTmaxOnTime	0,0	Maximum output ON time
UCPTminOnTime	0,0	Minimum output ON time

1.1.5.2.1 SCPTovrValue

This configuration type set the value for the output variable, when the object is in override mode. The variable type is a SNVT_switch (95). The value is used on the nvoOutput variable from the object.

1.1.5.2.2 SCPTmaxRcvTime, nviInputA

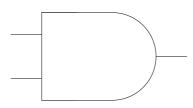
The maximum period of time that may expire with no updates on the associated input network variables before the object goes into heartbeat failure mode. A zero value disables.

1.1.5.2.3 SCPTmaxRcvTime, nviInputB

The maximum period of time that may expire with no updates on the associated input network variables before the object goes into heartbeat failure mode. A zero value disables.

1.1.5.2.4 SCPTmaxSend Time

The maximum period of time between consecutive transmissions of the current value.



1.1.5.2.5 UCPTdigitalFunction

This property is used to select the required digital function from the list below.

UCPTdigitalFunction	Index	description
DFT_AND	0	Make a logical AND function, set output ON
		if both inputs are ON.
DFT_OR	1	Make a logical OR function, set the output
		ON if any of the two inputs are ON.
DFT_LATCH	2	Latch input 1 to the output and clear the
		latch when input 2 goes ON.
DFT_RELAY	3	Set output to same value as input 1, if input 2
		is ON. If input 2 is OFF, output is also off.

1.1.5.2.5.1 DFT_AND

Figure 12 AND Gate

AND Gate			
Input A Input B Output			
0	0	0	
0	1	0	
1	0	0	
1	1	1	

1.1.5.2.5.2 DFT_AND inverted output

Figure 13 NAND Gate

NAND Gate			
Input A Input B Output			
0	0	1	
0	1	1	
1	0	1	
1	1	0	

1.1.5.2.5.3 DFT_OR

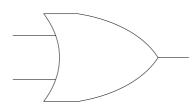


Figure 14 OR gate

OR Gate			
Input A Input B Output			
0	0	0	
0	1	1	
1	0	1	
1	1	1	

1.1.5.2.5.4 DFT_OR inverted output

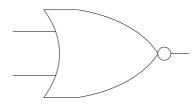


Figure 15 NOR Gate

NOR Gate			
Input A Input B Output			
0	0	1	
0	1	0	
1	0	0	
1	1	0	

1.1.5.2.5.5 DFT_LATCH

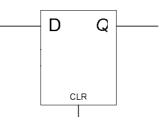
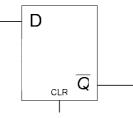
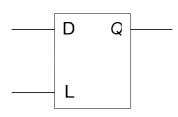


Figure 16 Latch

LATCH			
D	CLR	Q	
Shift to 1	0	1	
Shift to 0	0	Q	
Х	1	0	

1.1.5.2.5.6 DFT_LATCH inverted output




Figure 17 Latch inverted out

LATCH			
D	CLR	Q	
Shift to 1	0	0	
Shift to 0	0	Q	
X	1	1	

1.1.5.2.5.7 DFT_RELAY

Figure 18 Relay gate

Relay gate		
D	L	Q
1	1	1
0	1	0
Х	0	0

1.1.5.2.5.8 DFT_RELAY inverted output

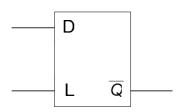


Figure 19 Relay inverted output

Relay gate		
D	L	Q
1	1	0
0	1	1
Х	0	1

1.1.5.2.6 UCPTdefaultIn, nviInputA

This configuration property is used to select a fixed value on the input A. This can be used as a comparator function with a fixed input to the gate and only one active input to the gate. The variable type is a SNVT_switch (95).

1.1.5.2.7 UCPTdefaultIn, nviInputB

This configuration property is used to select a fixed value on the input B. This can be used as a comparator function with a fixed input to the gate and only one active input to the gate. The variable type is a SNVT_switch (95)

1.1.5.2.8 UCPTinvertInput, nviInputA

Configuration property used to select if the input A is inverted or not.

UCPTinvertOutput	Description
BOOL_TRUE	Input inverted
BOOL_FALSE	Input not inverted

1.1.5.2.9 UCPTinvertInput, nviInputB

Configuration property used to select if the input B is inverted or not.

UCPTinvertOutput	Description
BOOL_TRUE	Input inverted
BOOL_FALSE	Input not inverted

1.1.5.2.10 UCPTinvertOutput

Configuration property used to select if the output is inverted or not.

UCPTinvertOutput	Description
BOOL_TRUE	Output inverted
BOOL_FALSE	Output not inverted

1.1.5.2.11 UCPTmaxOnTime

The configuration property is used to limit the output in time. It will limit the active output time. The time is specified in seconds. If this function not used the time shall be set to 0,0 seconds, equal to no limitation. If the value is set to 10 seconds you will get an active output in 10 seconds even in the input is active for 20 seconds. It can be used as a ONE SHOOT function.

1.1.5.2.12 UCPTminOnTime

The configuration property is used to set a minimum time for the output. The output will as a minimum always have an active output equal to the minimum on time, even if the input to the gate is shorter than the minimum on time. The time is specified in seconds. If this function not used the

time shall be set to 0,0 seconds, equal to no minimum active time. This function can enlarge a short active ON signal and make sure to get an active output in the defined period.

1.1.6 Analog Functional Block, 4 objects

The analog function object is used to make analog functions as minimum out, maximum out, add inputs, subtract inputs, multiply inputs, divided inputs, take average of input and fin the difference between the inputs.

The analog function object help the system integrator with quick and easy changes and new functions without requiring a new firmware for the products in the network.

Analog function#	Name in LonMaker list
1	AnalogFunc_1
2	AnalogFunc_2
3	AnalogFunc_3
4	AnalogFunc_4

Figure 20 The analog function object

💞 LonMaker Browser - Untitled				×
<u>File E</u> dit <u>B</u> rowse <u>H</u> elp				
F	₩ 🕐 🕀 🖶		\$	•
Network Variable	Config Prop	Mon	Value	
	UCPTanalogFunction	N	AFT_MIN	
	UCPTlogicFunction	N	LFT_GREATER	
nviAnalogInA		Y	0,000	1
nviAnalogInA	SCPTmaxRcvTime	N	0,0	
nviAnalogInA	UCPTinputConstValue	N	0,000	
nviAnalogInA	UCPTinputUseConst	N	BOOL_FALSE	
nviAnalogInB		ΥD	0,000	
nviAnalogInB	SCPTmaxRcvTime	N	0,0	
nviAnalogInB	UCPTinputConstValue	N	0,000	
nviAnalogInB	UCPTinputUseConst	N	BOOL_FALSE	
nvoAnalogOut		Y	0,000	
nvoAnalogOut	SCPTmaxSendTime	N	0,0	
nvoAnalogOut	SCPTovrValue	N	0,000	
nvoDigitalOut		Y	0,0 0	
nvoDigitalOut	SCPTmaxSendTime	N	0,0	
nvoDigitalOut	SCPTovrValue	N	0,0 0	-
Ready 7			//	

Figure 21 Browsing the analog function object

1.1.6.1 Network Variable Interface

Variable name	Default Value	Туре	Description
nviAnalogInA	0,0	SNVT_lev_percent (81)	Analog input A
nviAnalogInB	0,0	SNVT_lev_percent (81)	Analog input B
nvoAnalogOut	0,0	SNVT_lev_percent (81)	Analog output
nvoDigitalOut	0,0 0	SNVT_switch (95)	Digital output

1.1.6.1.1 nviAnalogInA

This variable is the A input to the analog function.

1.1.6.1.2 nviAnalogInB

This variable is the B input to the analog function.

1.1.6.1.3 nvoAnalogOut

This variable is the analog output from the analog function. The output is processed by the analog function and how it is processed is depending on the function selection with the configuration property UCPTanalogFunction. The function could be AFT_MIN and this will send the minimum value out on the output variable.

1.1.6.1.4 nvoDigitalOut

This variable is the digital output from the analog function. The output is processed by the analog function and how it is processed is depending on the function selection with the configuration property UCPTlogicFunction. The result is always a digital output related to the analog inputs. If the UCPTlogicFunction is LFT_GREATER, you will get an ON output if the A is greator than B. The ON output is 100,0 % state 1, the OFF output is 0,0% state 0.

1.1.6.2 Configuration Properties

Configuration	Default Value	Description
SCPTovrValue, nvoAnalogOut	0,0	Value in override mode
SCPTovrValue, nvoDigitalOut	0,0 0	Value in override mode
SCPTmaxRcvTime, nviAnalogInA	0,0	Maximum receive time
SCPTmaxRcvTime, nviAnalogInB	0,0	Maximum receive time
SCPTmaxSend Time, nvoAnalogOut	0,0	Maximum send time
SCPTmaxSend Time, nvoDigitalOut	0,0	Maximum send time
UCPTanalogFunction (3:85)	AFT_MIN	Set analog function type
UCPTlogicFunction (3:87)	LFT_GREATER	Set logic function type
UCPTinputConstValue, nviAnalogA	0,0	Constant value on A
UCPTinputConstValue, nviAnalogB	0,0	Constant value on B
UCPTinputUseConst, nviAnalogA	BOOL_FALSE	Select if constant used A
UCPTinputUseConst, nviAnalogB	BOOL_FALSE	Select if constant used B

1.1.6.2.1 SCPTovrValue, nvoAnalogOut

This configuration property set the value used in override mode. The value is a SNVT_lev_percent (81). This value will be send out from the object in override mode on nvoAnalogOut.

1.1.6.2.2 SCPTovrValue, nvoDigitalOut

This configuration property set the value used in override mode. The value is a SNVT_switch (95). This value will be send from the object in override mode on nvoDigitalOut.

1.1.6.2.3 SCPTmaxRcvTime, nviAnalogInA

The maximum period of time that may expire with no updates on the associated input network variables before the object goes into heartbeat failure mode. A zero value disables.

1.1.6.2.4 SCPTmaxRcvTime, nviAnalogInB

The maximum period of time that may expire with no updates on the associated input network variables before the object goes into heartbeat failure mode. A zero value disables.

1.1.6.2.5 SCPTmaxSend Time, nvoAnalogOut

The maximum period of time between consecutive transmissions of the current value.

1.1.6.2.6 SCPTmaxSend Time, nvoDigitalOut

The maximum period of time between consecutive transmissions of the current value.

1.1.6.2.7 UCPTanalogFunction

This configuration property is used to select the function in the analog function object. Depending on the setting you can either calculate, get the minimum, maximum or average value or find the difference between the 2 input, A and B.

UCPTanalogFunction	Index #	Description
AFT_MIN	0	Set the output to the smallest of the two input values.
AFT_MAX	1	Set the output to the largest of the two input values.
AFT_ADD	2	Add the two input values.
AFT_SUB	3	Subtract input 2 from input 1.
AFT_MUL	4	Multiply the two input values.
AFT_DIV	5	Divide input value 1 by input value 2.
AFT_AVG	6	Take the average of the two inputs
AFT_DIF	7	Take the difference between the two inputs.

1.1.6.2.8 UCPTlogicFunction

This configuration property select the logically function between input A and B and reflect it as a digital state, if the statement is true or not.

UCPTlogicFunction	Index #	Description
LFT_GREATER	0	A greater than B
LFT_GREATER_EQUAL	1	A greater or equal to B
LFT_SMALLER	2	A smaller than B
LFT_SMALLER_EQUAL	3	A smaller or equal to B
LFT_EQUAL	4	A equal to B
LFT_DEVIATES	5	A deviates from B

1.1.6.2.9 UCPTinputConstValue, nviAnalogA

With this property a constant value is configured, it can be used on input A. The UCPTinputUseConst select if it is used or not.

1.1.6.2.10 UCPTinputConstValue, nviAnalogB

With this property a constant value is configured, it can be used on input B. The UCPTinputUseConst select if it is used or not.

1.1.6.2.11 UCPTinputUseConst, nviAnalogA

This property select if the constant value UCPTinputConstValue is used on input A instead of a input from the network.

UCPTinputUseConst	Description
BOOL_TRUE	Constant value used
BOOL_FALSE	Constant value not used

1.1.6.2.12 UCPTinputUseConst, nviAnalogB

This property select if the constant value UCPTinputConstValue is used on input B instead of a input from the network.

UCPTinputUseConst	Description
BOOL_TRUE	Constant value used
BOOL_FALSE	Constant value not used

1.2 Lighting profiles:

The following is describing the lightning software functions implemented in the Comfort and light controller Lonbox PZM4146.

1.2.1 Light Sensor Input (1010), 2 objects

The following describes the light sensor object. The object is used to measure ambient light levels. The light sensor object is used together with controller objects, such as the constant light controller. Typically the light sensor output is connected to the constant light controller input.

The light object service the hardware input used for light sensors and convert the hardware signals to a digital SNVT resource on the network. The hardware connected is detected as a 0 til 10 voltage input signal.

LUX #	Connector #	Name in LonMaker list
1	41.1	LightSensor_1
2	41.2	LightSensor_2

Figure 3 The light sensor hardware/software relation

40.2.0V	40 1 0V
4121UX	41 1 I I X
42 2 + 24V	42 1 +24V
43 2 +12V	43 1 +12V

Figure 4 The light sensor hardware input

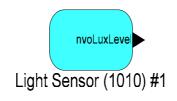


Figure 22 The light sensor object

💞 LonMaker Browser - Untitled				
<u>File Edit B</u> rowse	e <u>H</u> elp			
B	₩ 🕐 🕀 🗲		‡ ‡ 0	
Network Variable	Config Prop	Mon	Value	
	SCPTovrValue	N	0	
	UCPTsensorOffset	N	0	
	UCPTsensorRange	N	1000	
nvoLuxLevel		N	2	
nvoLuxLevel	SCPTmaxSendTime	N	60,0	
nvoLuxLevel	SCPTminSendTime	N	5,0	
				-
Ready	•		CAP 1	

Figure 23 Browsing the light sensor object

1.2.1.1 Network Variable Interface

Variable name	Default Value	Туре	Description
nvoLuxLevel	0	SNVT_lux (79)	Output light level

1.2.1.1.1 nvoLuxLevel

This variable is the output from the light sensor object. The hardware monitors the 0 to 10 volt input voltage and send out the variable manipulated by the configuration properties UCPTsensorOffset and UCPTsensorRange

1.2.1.2 Configuration Properties

Configuration	Default Value	Description
SCPTovrValue (33)	0	Lux level when overwrite
SCPTmaxSendTime (49)	60,0	Maximum receive time
SCPTminSendTime (52)	1,0	Minimum send time
UCPTsensorRange	1/1	Lux level output range
UCPTsensorOffset	0	Lux level offset from zero

1.2.1.2.1 SCPTovrValue

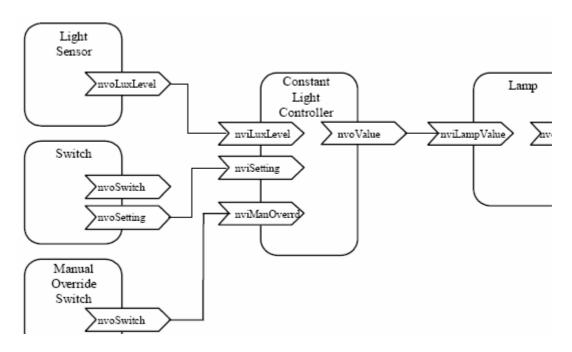
This configuration property set the value for the output variable, when the object is in override mode. The variable type is a SNVT_lux (79). The value is used on the nvoLuxLevel variable from the object.

1.2.1.2.2 SCPTmaxSendTime

This configuration property set the value for the send heartbeat. Maximum period of time that expires before the object automatically transmits the present value of the lux level output NV.

1.2.1.2.3 SCPTminSendTime

This configuration property set the value for the minimum send time. Minimum period between output NV transmissions (maximum transmission rate).


1.2.1.2.4 UCPTsensorRange

This configuration property is used to calibrate the external hardware input. It will calibrate the sensor range output. If the value is set to 1000, 10 volt on the input will be represented as 1000 lux and the highest value send out is 1000 lux.

1.2.1.2.5 UCPTsensorOffset

This is used to calibrate the external hardware input. It will calibrate the sensor ra is used to calibrate the external hardware input. It will calibrate the sensor offset failure from the value 0. If the value is set to 20, 0 volt on the input will be represented as 20 lux on the network and the lowest value send out is 20 lux.

1.2.1.3 Light sensor object typically use

1.2.2 Lamp Actuator (3040), 6 objects

The following describes the lamp actuator object. The lamp actuator object is used to control the illumination level of a hardware lamp output. The lamp actuator is used with switch and controller devices such as the constant light controller and scene controller. A switch object output nvoSwitch is connected to the input nviLampValue of the lamp actuator. Controller objects can be used between switch type sensors and lamp actuators. In cases of multiple sensors the feedback connection can be used to synchronize a group of switches.

Lamp #	Zone #	Connector #	Name in LonMaker list
1	1	1.1	Lamp_1_1
2	1	4.1	Lamp_2_1
3	1	7.1	Lamp_3_1
1	2	1.2	Lamp_1_2
2	2	4.2	Lamp_2_2
3	2	7.2	Lamp_3_2

Figure 5	The lamp	actuators	software	hardware	relation
rigui e 5	I ne lamp	actuators	solumate	naruwarc	relation

M	z	ЪF	M2	z	ЪF	M3	z	ЪF
12	22	32	42	52	62	7.2	82	92
M1	z	ΡF	сW	z	ΡF	M3	z	ΡF
-	24	31	41	51	61	71	8 7	91
_	ight H inf			GHT I INR		LI	GHT	3

Figure 6 The lamp actuator hardware outputs

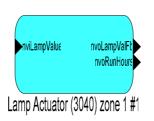


Figure 24 The lamp actuator object

💞 LonMaker Browser - Untitled 📃 🗖						
Eile Edit Browse Help						
B	ا 🔁 🕑 🔠	E	T ST_OFF			
Network Variable	Config Prop	Mon	Value			
	SCPTinvrtOut	N	ST_OFF			
	SCPTovrValue	N	75,01			
nviLampValue		YΟ	0,0 0			
nvoLampValFb		ΥD	0,0 0			
nvoRunHours		Y	0 13:0:0:0			
nvoRunHours	SCPTrunHrlnit	N	0 0:0:0:0			
				$\overline{\mathbf{v}}$		
Ready			1	1.		

Figure 25 Browsing the lamp actuator object

1.2.2.1 Network Variable Interface

Variable name	Default Value	Туре	Description
nviLampValue	0,0 0	SNVT_switch (95)	Control input
nvoLampValueFb	0,0 0	SNVT_switch (95)	Lamp actuator feed back
nvoRunHours	0 0:0:0:0	SNVT_elapsed_tm (87)	Elapsed ON time

1.2.2.1.1 nviLampValue

This variable is the control input. Permits other devices to control the Lamp Actuator level and state.

1.2.2.1.2 nvoLampValueFb

Lamp feedback output variable. State of the Lamp Actuator (ON or OFF) and the percentage level of intensity.

1.2.2.1.3 nvoRunHours

This output variable contains the value for the accumulated actuator ON time. The Comfort and Light Controller automatically monitor the lamp actuator's ON time. The value can be set and reset with the configuration property SCPTrunHrInit. The timer is enabled counting time, whenever the lamp actuator is turned ON. Elapsed time have following format:

day hour : minute : second : millisecond.

It is only the day and hour field in the structure that is used. Internally the counter is counting in seconds, but it only updates the hour and date field.

Configuration	Default Value	Description
SCPTovrValue (33)	75,0 1	Lamp value when overwrite
SCPTinvrtOut (16)	ST_OFF	Setting if output is inverted
SCPTrunHrInit (135)	0 0:0:0:0	Set or reset Running hours

1.2.2.2 Configuration Properties

1.2.2.2.1 SCPTovrValue

This configuration type set the value for the output variable, when the object is in override mode. The variable type is a SNVT_switch (95). The value is used on the nvoLampValue variable from the object.

1.2.2.2.2 SCPTinvrtOut

This configuration property set the parameter, if the lamp output is inverted or not. This possibility is used when an external relay is used and the electrically installation shall be fail-safe.

SCPTinvrtOut	Description
ST_OFF	Output not inverted
ST_ON	Output inverted

1.2.2.2.3 SCPTrunHrInit

This configuration is used to initialize the running hour counter value. The counter is send out on the SNVT variable nvoRunHours.

Elapsed time have the following format: day hour : minute : second :millisecond.

It is only the day and hour field in the structure that is used. Internally the counter is counting in seconds, but it only updates the hour and date field in the structure.

To change the value it's important to change value from what it is and not only resend the value existing in the property all ready.

For example:

The configuration property value is already 0 0:0:0:0 and we want to set the nvoRunHours to 0 0:0:0:0 using the configuration property. To do this you need to change the configuration property different from 0 0:0:0:0, it could be 0 1:0:0:0. Here after we set the value back to 0 0:0:0:0 and now the nvoRunHours is reset to 0 0:0:0:0.

Another example:

We want to set the nvoRunHours to 18 days and 1 hour (18 1:0:0:0). The configuration property value is 0 0:0:0:0, we can directly enter 18 1:0:0:0 to change the nvoRunHours.

1.2.2.3 Lamp object typically use

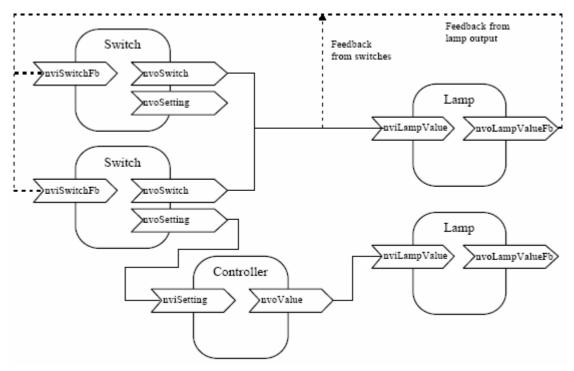


Figure 26 Typically use of the lamp actuator object

1.2.3 Constant Light Controller (3050), 4 objects

The following section is describing constant light controller object. The controller input is the ambient light level and the output is the state and illumination level to the lamp actuator.

Typically the constant light controller input is connected to a light sensor object and the output to a lamp actuator object. An extern input can be used to turn the constant light controller object into AUTO and OFF mode. Also the illumination level set point can temporarily be adjusted upwards and downwards. An additional switch can override the controller. When manual override input is written to, the constant light controller object is turned into MANUAL mode and the data is directly passed to the lamp.

The controller is designed from the experience Prolon have got, from the many building automation installation we have delivered components for. The controller is calculating the failure between the set point and the measured light level. If the failure is more than a fixed 8% failure dead band, the lamp output will be either be increased or decreased. The correction on the lamp output will change with the speed configured by the value in the configuration parameter step value.

Controller #	Name in LonMaker list
1	ConstantLight_1
2	ConstantLight_2
3	ConstantLight_3
4	ConstantLight_4

Figure 27 The constant light controller object

💞 LonMaker Browser - Untitled 📃 🗖						
<u>File E</u> dit <u>B</u> rowse	e <u>H</u> elp					
B		:	\$ 180,0			
Network Variable	Config Prop	Mon	Value	<u> </u>		
	SCPTclOffDelay	N	180,0			
	SCPTclOnDelay	N	0,0			
	SCPTIuxSetpoint	N	350			
	SCPTmaxSendTime	N	6,0			
	SCPTonOffHysteresis	N	25,0			
	SCPTstep	N	2,5			
	UCPTminOnLevel	N	1,0			
	UCPTslaveOffset	N	0,000			
	UCPTturnOffWarningTime	N	60,0			
	UCPTturnOnLevel	N	75,0			
nviLuxLevel		N	0			
nviLuxSetpt		N	0			
nviManOveride		N	0,0 0			
nviSetting		N	SET_OFF 0,0 0,00			
nvoLampValue		N	0,0 0			
nvoSlaveValue		N	0,0 0			
				-		
Ready			CA	P 1 //		

Figure 28 Browsing the constant light controller object

Variable name	Default Value	Туре	Description
nviLuxLevel	0	SNVT_lux (79)	Ambient light level input
nviSetting	SET_OFF 0,0 0,00	SNVT_setting (117)	Mode selection, setpoint
nviManOverride		SNVT_switch (95)	Manual override control
nviLuxSetpt	0	SNVT_lux (79)	Temporary set point input
nvoLampValue	0,0 0	SNVT_switch (95)	Lamp actuator output
nvoSlaveValue	0,0 0	SNVT_switch (95)	Slave lamp actuator output

1.2.3.1 Network Variable Interface

1.2.3.1.1 nviLuxLevel

This input variable is sourcing the ambient light level to the controller object. The constant light controller object will calculate an output based on this value and it's failure from the set point defined with the SCPTluxSetpoint property or the temporary set point set by the input variable nviLuxSetpt. The primary output is the variable nvoLampValue and secondary the nvoSlaveValue.

1.2.3.1.2 nviSetting

This input network variable selects the operating mode and adjusts the setpoint of the constant light controller. Modes are ON, OFF, DOWN or UP.

The ON mode turns on the constant light controller into automatic, which then starts to control the lamp value output, so that the illumination level on the output which is provided by the nviLuxLevel equals to the setpoint value.

The OFF mode turns off the controller and the lamp value output.

The setpoint of the controller can temporarily be stepped upwards and downwards. The changes made to the setpoint value are not stored permanently into the memory. Next time when ON mode is selected the original setpoint from the SCPTluxSetpoint property is restored. The variable nviSetting uses SNVT_setting enumerations ON, OFF, UP and DOWN. With UP and DOWN functions a percentile value (0%-100% in 0.5% steps) is used to define the relative size of an increment/decrement.

1.2.3.1.3 nviManOverride

This variable is the manual override input and provides enable of manual control for the lamp value output.

1.2.3.1.4 nviLuxSetpt

This variable is the manual input for a temporary light set point. The set point will be reset to the set point defined by SCPTluxSetpoint property when the controller object is set ON with the setting input or when the Comfort and Light Controller is booted.

1.2.3.1.5 nvoLampValue

This output network variable provides the state for the lamp actuator (ON or OFF) and the percentage level of intensity. The valid range of the state is as defined for SNVT_switch where 0 means OFF and 1 means ON. The 8-bit intensity value contains a value 0 to 200, representing minimum to maximum (0%-100%) intensity. This variable I the primary output from the controller.

1.2.3.1.6 nvoSlave Value

This output network variable provides the state for the lamp actuator (ON or OFF) and the percentage level of intensity. The valid range of the state is as defined for SNVT_switch where 0 means OFF and 1 means ON. The 8-bit intensity value contains a value 0 to 200, representing minimum to maximum (0%-100%) intensity. This variable I the secondary output from the controller, normally used as a slave function. The slave output can be offset from the primary master output. Please see the following graphic to understand the offset function. The offset level can be configured med the parameter UCPTslaveOffset configuration property.

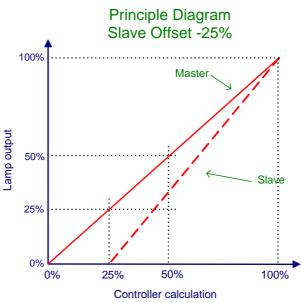


Figure 29 Understanding the light slave output

Configuration	Default Value	Description
SCPTclOffDelay	180,0	Delay time switching Off
SCPTclOnDelay	0,0	Delay time switching On
SCPTluxSetpoint	350	Controller light level set point
SCPTmaxSendTime (52)	6,0	Maximum send time
SCPTonOffHysteresis	25,0	Hysteresis between On and OFF
SCPTstep	2,5	Speed for the regulation
UCPTminOnLevel	1,0	The lowest light level
UCPTslaveOffset	0,0	Slave offset from master
UCPTturnOffWarningTime	60,0	Warning time before switching OFF
UCPTturnOnLevel	75,0	On level for automatic regulation

1.2.3.2 Configuration Properties

1.2.3.2.1 SCPTclOffDelay

This configuration property is used to configure the delay time, before the automatic regulation is switching OFF the output after no light is required any longer.

The light will automatic switch off, when the output from the controller is 0% light level and the required light level has been obtained compared to the light level set point. Hereafter the light will switch OFF delayed by the SCPTclOffDelay time configuration.

1.2.3.2.2 SCPTclOnDelay

This configuration property is used to configure the delay time, before the automatic regulation is starting after is has been switched off, when light is required. Light is required if the measured light

level is lower than the set point, minus the SCPTonOffHysteresis value. Hereafter the light will turn on delayed be the time, configured in the SCPTclOnDelay property.

1.2.3.2.3 SCPTluxSetpoint

This property is used to configure the light level set point defined in lux. The value can be in the range 0 to 65636.

1.2.3.2.4 SCPTmaxSendTime

This configuration property set the value for the send heartbeat. Maximum period of time that expires before the object automatically transmits the present value of the lux level output NV.

1.2.3.2.5 SCPTonOffHysteresis

1.2.3.2.6 SCPTstep

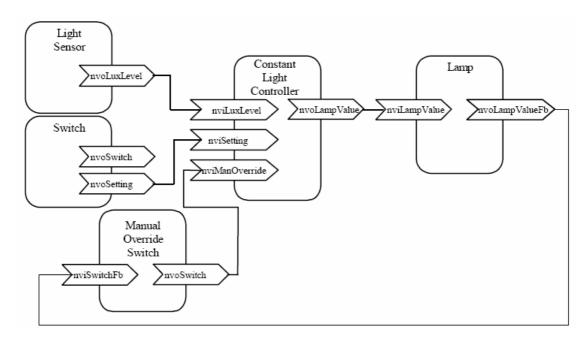
This configuration property is used to configure the speed for the regulation loop. The property describe the maximum value in % point, that the output can change in one step. The output will change every second if necessary and the maximum change in % point is defined in the UCPTstep.

1.2.3.2.7 UCPTminOnLevel

This configuration property is used to configure the minimum level for the light when the light is on. The value is described in %.

1.2.3.2.8 UCPTslaveOffset

This configuration property is used to configure the slaves offset from the master. The offset can be positive or negative related to the master lamp output. It is not a parallel offset . The value is described in %.


1.2.3.2.9 UCPTturnOffWarningTime

This configuration property is used to configure the warning time before the light turns off. This function is warning that the light soon will turn off.

1.2.3.2.10 UCPTturnOnLevel

This configuration property is used to configure the level the controller will start on when switching on in automatic mode.

1.2.3.3 Constant light controller object typically use

Figure 30 Constant light controller typically use

1.3 Space Comfort profiles:

The following list is describing the space comfort software functions implemented in the Comfort and Light Controller Lonbox PZM4146.

1.3.1 HVAC Temperature Sensor Input (1040), 2 objects

The temperature sensor object is used to measure on a hardware input from a temperature sensor and make this measurement available on the network as a SNVT variable resource.

The hardware sensor connected to the input, can be one from many types as NTC I various models and PT1000. The temperature measured is often used as input to the comfort space controller object, controlling the space temperature in a zone.

Temp #	Connector #	Name in LonMaker list
1	44.1 - 45.1	TempSensor_1
2	44.2 - 45.2	TempSensor_2

Table 1 The software and hardware relation

Figure 7 The temperature hardware input



Figure 31 The temperature sensor object

👋 LonMaker Bro	wser - Untitled				
Eile Edit Browse Help					
F	₩ 🕐 🕀 🗲		30,0		
Network Variable	Config Prop	Mon	Value	<u> </u>	
	SCPTmaxSendTime	N	30,0		
	SCPTminSendTime	N	0,5		
	SCPTovrValue	N	21,60		
	UCPTtempSensorType	N	TS_NTC_5K5		
nvoHVACTemp		N	24,30		
nvoHVACTemp	SCPTminDeltaTemp	N	0,30		
nvoHVACTemp	SCPToffsetTemp	N	0,00		
				-	
Ready 1					

Figure 32 Browsing the temperature sensor object

1.3.1.1 Network Variable Interface

Variable name	Default Value	Туре	Description
nvoHVACTemp			

1.3.1.1.1 nvoHVACTemp

This output network variable is used to source a temperature signal to a control object as a space comfort controller.

1.3.1.2 Configuration Properties

Configuration	Default Value	Description
SCPTmaxSendTime (49)	30,0	Heartbeat maximum send time
SCPTminSendTime (52)	0,5	Heartbeat minimum send time
SCPTovrValue (33)	22,0	Temperature value when overwrite
SCPTminDeltaTemp()	0,30	Temp. change before variable send
SCPToffsetTemp ()	0,00	Temp. hardware offset adjustment
UCPTtempSensorType ()	TS_NTC_1K8	Temperature type selection

1.3.1.2.1 SCPTmaxSendTime

This configuration property set the value for the send heartbeat. Maximum period of time that expires before the object automatically transmits the present value of the lux level output NV.

1.3.1.2.2 SCPTminSendTime

This configuration property set the value for the minimum send time. Minimum period between output NV transmissions (maximum transmission rate).

1.3.1.2.3 SCPTovrValue

This configuration property set the value for the output variable, when the object is in override mode. The variable type is a SNVT_temp (). The value is used on the nvoHVACTemp variable from the object.

1.3.1.2.4 SCPTminDeltaTemp

This configuration property is used to configure how large a temperature change, that will activate an event sending out an update on the nvoHVACTemp variable. The value is in

1.3.1.2.5 SCPToffsetTemp

This configuration property type is used the adjust the hardware sensor connected to the comfort and light controller temperature input and compensate the temperature failure on the sensor. The value is subtracted or added from the measured sensor value.

1.3.1.2.6 UCPTtempSensorType

This configuration property type is used to select the hardware temperature sensor type connected to the comfort and light controller.

UCPTtempSensorType	Index	Description
	#	
TS_NTC_1K8		NTC sensor 1K8
TS_NTC_5K5		NTC sensor 5K5
TS_NTC_5K5_GROUNDED		NTC 5K5 one grounded wire
TS_NTC_1015_0_60		NTC 0 to 30 degrees Celsius
TS_NTC_1015_30_30		NTC -30 to 30 degrees Celsius
TS_NTC_1015_0_30		NTC 0 to 30 degrees Celsius
TS_PTC_1000		Standard PT1000 sensor

1.3.2 Space Comfort Controller (8500), 2 objects

The following section is describing the space comfort controller software object. This object is a temperature controller used to automatic controlling heat and or cool in a zone. The object receive a temperature on its input variable and decide if there is need for heat or cool. The decision is taken with reference to a set of set points configured in the object. Hereafter the controller will use a PI function controlling either heat or cool output.

The space comfort controller has both a primary heat and cool output and a secondary heat and cool output. This gives many possibilities when configuring the controller functions. In cooling situations the ventilation can take the first stage for cooling and a real cooler unit can take the second stage if the first stage cannot cool down, to the set point used.

The controller is designed to work with partition walls, combining two separate controllers into one, when a partition wall is open.

The controller also have build-in compensation when no need for heat in the zone, but it's very cold outside. Using the outdoor temperature compared to a configured minimum level property, a minimum heat signal is send out the heat output even if there is no need for heat in the zone, giving a better space comfort, specially close to the windows area.

Controller #	Name in LonMaker list
1	SpaceComfort_1
2	SpaceComfort_2

Space Comfort Controller (8500)

Figure 33 The space comfort controller

LonMaker Browser - Untitled				
≥ ∎	₩ 🕐 🕀 💽 🗖	∍ ‡	ا من الله الله الله الله الله الله الله الل	
Vetwork Variable	Config Prop	Mon	Value	
	SCPTholdTime	N	600,0	1
	SCPThvacType	N	HVT_GENERIC	1
	SCPTmaxRcvTime	N	250,0	1
	SCPTmaxSendTime	N	120,0	1
	SCPTsetPnts	N	23,00,25,00,28,00,21,00,19,00,16,00	1
	UCPTcoolGain	N	10,000	
		N	600,0	1
	UCPTcoolValveMotionT	N	10080	ł
	UCPTenergyHoldMode	N	EHM_NORMAL	┨
	UCPTheatGain	N	10,0000	ł
	UCPTheatITime	N	600,0	-
				-
	UCPTheatValveMotionT	N	10080	-
	UCPTminCool	N	0,000;0,000;0,000	-
	UCPTminHeat	N	(-10,00;30,000),(10,00;0,000)	-
	UCPTminHeatInStandby	N	BOOL_TRUE	
nviApplicMode		N	HVAC_AUTO	
nviCoolPrSlve		N	0,000	
nviCoolSeSlve		N	0,000	
nviEnrgyHldOf		N	0,0 0	
nviHeatPrSlve		N	0,000	
nviHeatSeSlve		N	0,000	
nviOccSched		N	OC_OCCUPIED,OC_OCCUPIED,0	1
nviOccSensor		N	OC_OCCUPIED	1
nviOutdoorTmp		N	327,67	1
nviSetpoint		N	327,67	1
nviSetptOffst		N	0,00	1
nviSlave		N	0,0 0	1
nviSpaceTemp		N	327,67	1
nviValveOvrid		N	HVO_OFF,0,000,0	1
nvoCoolPrimry		N	0,000	1
nvoCoolPrimry	UCPTcoolPrimPart	N	100,0	1
nvoCoolSecond		N	0,000	1
nvoCoolSecond	UCPTcoolSecPart	N	0,0	
nvoEffOccup		N	OC_OCCUPIED	
nvoEffSetpt		N	0,00	-
nvoHeatCool				-
		N	HVAC_AUTO	-
nvoHeatPrimry	LICETIA	N	0,000	-
nvoHeatPrimry	UCPTheatPrimPart	N	100,0	
nvoHeatSecond		N	0,000	-
nvoHeatSecond	UCPTheatSecPart	N	0,0	
nvoSetpoint		N	0,00	
nvoSpaceTemp		N	327,67	
nvoUnitStatus		N	HVAC_AUTO,0,000,0,000,0,000,0,000,0,000,0	
leady			1	í

Figure 34 Browsing the space comfort controller object

1.5.2.1 Network variable interface					
Variable name	Default Value	Туре	Description		
nviApplicMode	HVAC_AUTO	SNVT_hvac_mode (108)	Application mode input.		
nviCoolPrSlve	0,0	SNVT_lev_percent (81)	Cool slave input primary		
nviCoolSeSlve	0,0	SNVT_lev_percent (81)	Cool slave input secondary		
nviEnrgyHldOf	0,0 0	SNVT_switch (95)	Energy hold-off input		
nviHeatPrSlve	0,0	SNVT_lev_percent (81)	Heat slave input primary		
nviHeatSeSlve	0,0	SNVT_lev_percent (81)	Heat slave input secondary		
nviOccSched	OC_OCCUPIED,	SNVT_tod_event (128)	Operation mode selection		
	OC_OCCUPIED,0				
nviOccSensor	OC_OCCUPIED	SNVT_occupancy (109)	Occupancy sensor input		
nviOutdoorTmp	327,067	SNVT_temp_p (105)	Outdoor temperature		
nviSetpoint	327,067	SNVT_temp_p (105)	Absolute set point		
nviSetptOffst	0,0	SNVT_temp_p (105)	Set point offset value		
nviSlave	0,0 0				
nviSpaceTemp	327,067	SNVT_temp_p (105)	Temperature input		
nviValveOvrid	HVO_OFF,0,000,0	SNVT_hvac_overid (111)	Valve override input		
nvoCoolPrimary	0,0	SNVT_lev_percent (81)	Primary cool out		
nvoCoolSecond	0,0	SNVT_lev_percent (81)	Secondary cool out		
nvoEffOccup	OC_OCCUPIED	SNVT_occupancy (109)	Effective occupancy out		
nvoEffSetpt	0,0	SNVT_temp_p (105)	Effective setpoint output		
nvoHeatCool	HVAC_AUTO	SNVT_hvac_mode (108)	Effective heat/cool out		
nvoHeatPrimary	0,0	SNVT_lev_percent (81)	Primary heat out		
nvoHeatSencond	0,0	SNVT_lev_percent (81)	Secondary heat out		
nvoSetpoint	0,0	SNVT_temp_p (105)	Local setpoint output		
nvoSpaceTemp	327,067	SNVT_temp_p (105)	Effective temp. output		
nvoUnitStatus	HVAC_AUTO,	SNVT_hvac_status (112)	Unit status output		
	0,000,0,000,		_		
	0,000,0,000,				
	0,000,0				

1.3.2.1 Network Variable Interface

1.3.2.1.1 nviApplicMode

Application mode input. Used to coordinate the SCC with any supervisory controller.

1.3.2.1.2 nviCoolPrSlve

Slave input used when in slave mode. This value will be send out on the primary cool output, when the object is forced into slave mode, with the variable SNVT_switch on the nviSlave input.

1.3.2.1.3 nviCoolSeSlve

Slave input used when in slave mode. This value will be send out on the secondary cool output, when the object is forced into slave mode, with the variable SNVT_switch on the nviSlave input.

1.3.2.1.4 nviEnrgyHldOf

Energy hold-off input. This input is used to stop heating and cooling while allowing the unit to protect the space from temperature extremes.

1.3.2.1.5 nviHeatPrSlve

Slave input used when in slave mode. This value will be send out on the primary heat output, when the object is forced into slave mode, with the variable SNVT_switch on the nviSlave input.

1.3.2.1.6 nviHeatSeSlve

Slave input used when in slave mode. This value will be send out on the secondary heat output, when the object is forced into slave mode, with the variable SNVT_switch on the nviSlave input.

1.3.2.1.7 nviOccSched

Occupancy scheduler input. Command the SCC into different occupancy modes using the SNVT_tod_event structure.

1.3.2.1.7.1 SNVT_tod_event struture:

Field 1	Field 2	Field 3	
current_state	next_state	time_to_next_state	

Tod event field description

Field	Description	Refference
1 current_state	Occupancy, current	Occup_t table
2 next_state	Occupancy, next	Occup_t table
3 time_to_next_state	Time to next state	0 to 65535 minutes

1.3.2.1.7.1.1 Occup_t, Occupancy code names table:

Occup_t	Index
OC_NUL	-1
OC_OCCUPIED	0
OC_UNOCCUPIED	1
OC_BYPASS	2
OC_STANDBY	3

1.3.2.1.8 nviOccSensor

Occupancy sensor input. Indicate the presence of occupants in the controlled space/zone. This input start the hold timer and count down from the set value in the hold time property SCPTholdTime. The variable is SNVT_occupancy.

1.3.2.1.9 nviOutdoorTmp

Outdoor air temperature input. Represents information from an outdoor air temperature sensor. Is used to calculate minimum heat, compensation for chilled windows or other building parts, when the outdoor temperature is very low.

1.3.2.1.10 nviSetpoint

Absolute temperature setpoint input. Allow the temperature set points for the occupied and standby modes to be changed via the network directly.

1.3.2.1.11 nviSetptOffst

Setpoint offset input. Shifts the effective occupied and standby temperature setpoints by adding this value to the present setpoints.

1.3.2.1.12 nviSlave

1.3.2.1.13 nviSpaceTemp

Space temperature input. Connect an external space temperature sensor to the object.

1.3.2.1.14 nviValveOvrid

Water valve override input. Command the controller into a manual mode for overriding water valves using the SNVT_hvac_ove structure.

1.3.2.1.14.1 SNVT_hvac_ove struture:

Field 1	Field 2	Field 3
state	percent	flow

HVAC ove field description

Field	Description	Refference
1 state	Occupancy, current	hvac_overd_t table
2 percent	Valve value	% full scale
3 Flow	Valve flow	0 to 65535

hvac_overid_t, HVAC override state table:

The following function is implemented in the object.

hvac_overid_t	Index
HVO_OFF,0,000,0	0

1.3.2.1.15 nvoCoolPrimary

Primary cool output variable. This variable is a SNVT_lev_percent and is used to control a cool actuator object.

1.3.2.1.16 nvoCoolSecond

Secondary cool output variable. This variable is a SNVT_lev_percent and is used to control a cool actuator object.

1.3.2.1.17 nvoEffOccup

Effective occupancy output. Actual occupancy mode of the unit

1.3.2.1.18 nvoEffSetpt

Effective setpoint output. Monitors the effective temperature setpoint and send it out on the network.

1.3.2.1.19 nvoHeatCool

Effective heat or cool output. Actual heat or cool mode of the unit.

1.3.2.1.20 nvoHeatPrimary

Primary heat output variable. This variable is a SNVT_lev_percent and is used to control a heat actuator object.

1.3.2.1.21 nvoHeatSencond

Secondary heat output variable. This variable is a SNVT_lev_percent and is used to control a heat actuator object.

1.3.2.1.22 nvoSetpoint

Local setpoint output. Space temperature setpoint value if a setpoint device is hardwired.

1.3.2.1.23 nvoSpaceTemp

Effective space temperature output. Used to monitor the effective space temperature that the SCC is using for control.

1.3.2.1.24 nvoUnitStatus

Unit status output. Reports the SCC status. This output variable is a structure giving a total status for the space comfort controller:

mode, heat_output_primary, heat_output_secondary, cool_output, econ_output, fan_output, in_alarm

Structure fields

#1	# 2	#3	#4	# 5	#6	#7
Mode	heat_output_primary	heat_output_secondary	cool_output	econ_output	fan_output	in_alarm

Field	Description	Refference
1 mode	HVAC mode names	hvac_t
2 heat_output_primary	Primary heat	% of full scale
3 heat_output_secondary	Secondary heat	% of full scale
4 cool_output	Cool output	% of full scale
5 econ_output	Economizer output	% of full scale
6 fan_output	Fan output	% of full scale
7 in_alarm	In alarm state	alarm value

hvac_t description table:

hvac_t	Index #
HVAC_NUL	-1
HVAC_AUTO	0
HVAC_HEAT	1
HVAC_MRNG_WRMUP	2
HVAC_COOL	3
HVAC_NIGHT_PURGE	4
HVAC_PRE_COOL	5
HVAC_OFF	6
HVAC_TEST	7
HVAC_EMERG_HEAT	8
HVAC_FAN_ONLY	9
HVAC_FREE_COOL	10
HVAC_ICE	11
HVAC_MAX_HEAT	12
HVAC_ECONOMY	13
HVAC_DEHUMID	14
HVAC_CALIBRATE	15
HVAC_EMERG_COOL	16
HVAC_EMERG_STEAM	17

1.5.2.2 Comiguration 1 reperties			
Configuration	Default Value	Description	
SCPTholdTime	600,0	Occupancy timer value	
SCPThvacType (169)	HVT_GENERIC	HVAC unit type identifier	
SCPTmaxRcvTime	250,0	Heartbeat maximum receive time	
SCPTmaxSendTime	120,0	Heartbeat maximum send time	
SCPTsetPnts	23,00,25,00,28,00,21,00, 19,00,16,00	Set points for heat and cool	
UCPTcoolGain	10,0000	PI gain cool in procent	
UCPTcoollTime	600,0	PI time cool in seconds	
UCPTcoolValveMotionT	10080	Interval between valve motion	
UCPTenergyHoldMode	EHM_NORMAL	Energy hold mode selection	
UCPTheatGain	10,0000	PI gain heat in procent	
UCPTheatITime	600,0	PI time heat in seconds	
UCPTheatValveMotionT	10080	Interval between valve motion	
UCPTminCool	0,000;0,000;0,000	Minimum cool level selection	
UCPTminHeat	(-10,00;30,000),(10,00;0,000)	Minimum heat level selection	
UCPTminHeatInStandby	BOOL_TRUE	Heat standby function	
UCPTcoolPrimPart	100,0	Not implemented	
UCPTcoolSecPart	0,0	Not implemented	
UCPTheatPrimPart	100,0	Not implemented	
UCPTheatSecPart	0,0	Not implemented	

1.3.2.2 Configuration Properties

1.3.2.2.1 SCPTholdTime

This configuration property is used to set the timer value for the occupancy timer. This timer is used to hold the space/zone occupied after the last occupancy input. The timer is described in seconds.

1.3.2.2.2 SCPThvacType

HVAC unit type identifier. This value is set by the manufacturer to allow an integrator to know the function of this SCC device. The default value is HVT_GENERIC.

SCPThvacType	Index #
HVT_NUL	-1
HVT_GENERIC	0
HVT_FAN_COIL	1
HVT_VAV	2
HVT_HEAT_PUMP	3
HVT_ROOFTOP	4
HVT_UNIT_VENT	5
HVT_CHILL_CEIL	6
HVT_RADIATOR	7
HVT_AHU	8
HVT_SELF_CONT	9

1.3.2.2.3 SCPTmaxRcvTime

Maximum receive time. The maximum period of time that may expire with no updates on the associated input network variables before the object goes into heartbeat failure mode. A zero value disables. This configuration property is used for the SNVT input

1.3.2.2.4 SCPTmaxSendTime

Send heartbeat. Maximum period of time that expires before the specified NV outputs will automatically be updated again.

1.3.2.2.5 SCPTsetPnts

This configuration property is a structure used to set the setpoints for heat and cool, in occupied, unoccupied and standby mode.

Default values

Field 1	Field 2	Field 3	Field 4	Field 5	Field 6
23,00	25,00	28,00	21,00	19,00	16,00

Setpoints structure:

Field 1	Field 2	Field 3	Field 4	Field 5	Field 6
Occupied_cool	standby_cool	unoccupied_cool	occupied_heat	standby_heat	unoccupied_heat

Field description:

Field #	Description
1 occupied_cool	Occupied cooling setpoint. degrees Celsius
2 standby_cool	Standby cooling setpoint. degrees Celsius
3 unoccupied_cool	Unoccupied cooling setpoint. degrees Celsius
4 occupied_heat	Occupied heating setpoint. degrees Celsius
5 standby_heat	Standby heating setpoint. degrees Celsius
6 unoccupied_heat	Unoccupied heating setpoint.degrees Celsius

The setpoints are used depending on the occupied status as below:

	Effective Occupied				
Calender			nder		
		Occupied	OC_NUL		
		(day)	(night)		
ensor	Occupied	Occupied	Occupied		
Ser	Unoccupied	Standby	Unoccupied		

1.3.2.2.6 UCPTcoolGain

This configuration property is used to select the gain value in the PI regulator for the cooling part.

1.3.2.2.7 UCPTcooIlTime

This configuration property is used to select the integral time value in the PI regulator for the cooling part.

1.3.2.2.8 UCPTcoolValveMotionT

This configuration property is used to select the interval between an automatic valve motion on the cool valves.

1.3.2.2.9 UCPTenergyHoldMode

This configuration property is used to select the type of energy hold, that is used when the space comfort controller is in energy hold mode.

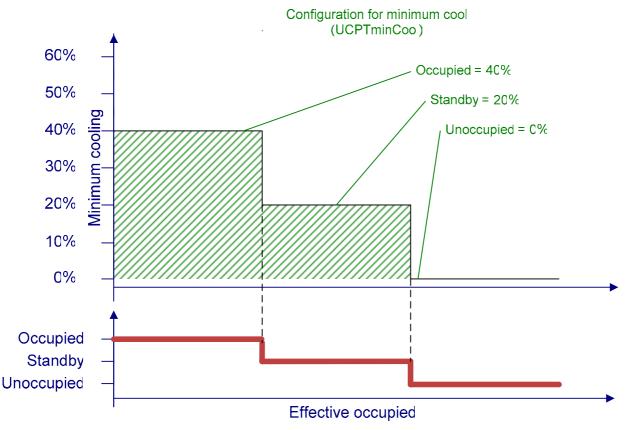
1.3.2.2.10 UCPTheatGain

This configuration property is used to select the gain value in the PI regulator for the heating part.

1.3.2.2.11 UCPTheatITime

This configuration property is used to select the integral time value in the PI regulator for the heating part.

1.3.2.2.12 UCPTheatValveMotionT


This configuration property is used to select the interval between an automatic valve motion on the heat valves.

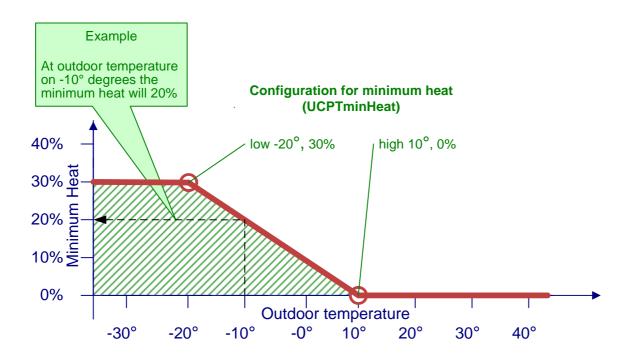
1.3.2.2.13 UCPTminCool

The configuration property UCPTminCool is used to configure the minimum cool output level on each state for the space comfort controller. The property is a s structure:

Field 1	Field 2	Field 3
occupied_cool	standby_cool	unoccupied_cool

Please see the following figure to understand the function of the property.

1.3.2.2.14 UCPTminHeat


The configuration property UCPTminHeat is used to configure the minimum heat output levels depending on the outdoor temperature, for the space comfort controller. The property is a s structure:

The structure:

Field 1	Field 2	Field 3	Field 4

Please see the following figure to understand the function of the property.

1.3.2.2.15 UCPTminHeatInStandby

This configuration property is used to select if minimum heat is used during standby or not.

UCPTminHeatInStandby	Description
BOOL_TRUE	Minimum heat on during standby
BOOL_FALSE	Minimum heat not on during standby

1.3.2.2.16 UCPTcoolPrimPart

No function

1.3.2.2.17 UCPTcoolSecPart

No function

1.3.2.2.18 UCPTheatPrimPart

No function

1.3.2.2.19 UCPTheatSecPart No function

1.3.3 Heat Actuator (3:20011), 2 objects

The following describes the heat actuator object. The object is used to control a hardware actuator for heat valves. The object is used to control both a digital, analog and floating actuators. The hardware output is either 24Vac ON/OFF or a 0 to 10Vdc signal with fixed 24Vac supply.

Heat #	AC#	0-10#	Name in LonMaker list
1	66.1	64.1	Heat_1
2	66.2	64.2	Heat_2

Table 2 T	he heat soft	tware hardwa	re relation
-----------	--------------	--------------	-------------

HEAT			
63 1 0Vdc	64 1 H+dc	65 1 0Vac	66 1 H+ac
63 2. 0Vdc	64 2 H+dc	65 2 0Vac	66 2 H+ac

Figure 8 The heat hardware outputs

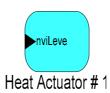


Figure 35 The heat actuator object

👋 LonMaker Bro	💞 LonMaker Browser - Untitled 📃 🗆 🔀					
<u>File Edit B</u> rowse <u>H</u> elp						
B	🖁 🗐 📇 🕐 🕀 🖻 😫 📩 100,000					
Network Variable	Config Prop	Mon	Value	<u></u>		
	SCPTovrValue	N	100,000			
	UCPThwValveCloseAssign	N	0			
	UCPThwValveOpenAssign	N	5			
	UCPTvalveCloseT	N	360,0			
	UCPTvalveMinPulse	N	240,0			
	UCPTvalveMinPulseLimit	N	30,0			
	UCPTvalveOpenT	N	300,0			
	UCPTvalveType	N	VT_DIGITAL_NORMAL_CLOSED			
nviLevel		N	0,000			
				-		
, Ready			1			

Figure 36 Bowsing the heat actuator object

The heat actuator object receive a control level in % and with help from the configuration properties a calculation is made, to decide how to actuate the hardware outputs.

When the object is used as a digital actuator control, the hardware output is turned ON and OFF with an interval related to the control level in %, giving approximately an average flow trough the valve matching the control input % level.

When the control input is under the valve minimum pulse limit level, the algorithm will calculate the pause length between the ON pulses and use a fixed ON length pulse using the valve minimum pulse with a security margin.

When the control input is over the valve minimum pulse limit level, the algorithm will calculate a duty cycle modulation using the valve open, close and minimum time compensating for the slow reaction of the actuator. This will generate an average flow trough the valve, matching the control input % level.

When the object is used as an analog actuator control, the hardware output is modulated to a 0 to 10 Vdc signal related to the control input in %, giving approximately a flow trough the valve matching the control input % level. In this configuration the digital hardware output can be configured as the 24Vac supply for the 0 to 10 Vdc actuator.

1.3.3.1 Network Variable Interface

Variable name	Default Value	Туре	Description
nviValueLevel	0 %	SNVT_lev_percent (82)	Input control value

1.3.3.1.1 nviValueLevel

This input network variable is the control level for the hardware actuator. It will control the actuator level in % of the full actuator range from 0 to 100%.

1.3.3.2 Configuration Properties

Configuration	Default Value	Description
SCPTovrValue (33)	100 %	SNVT overwrite value
UCPThwValveCloseAssign (3:71)	0	Select output hardware
UCPThwValveOpenAssign (3:70)	5 or 6	Select output hardware
UCPTvalveCloseT (3:43)	360 sec.	Actuator closing time
UCPTvalveMinPulse (3:44)	240 sec.	Minimum reaction time
UCPTvalveMinPulseLimit (3:72)	30 sec.	Level between algorithms
UCPTvalveOpenT (3:42)	300 sec.	Actuator opening time
UCPTvalveType (3:73)	VT_DIGITAL NORMAL	Actuator type selection
	CLOSED	

1.3.3.2.1 SCPTovrValue

This configuration property set the level on the hardware output, when the object is in override mode. The variable type is a SNVT_lev_percent (82). The value is used on the hardware output.

1.3.3.2.2 UCPThwValveCloseAssign

UCPThwValveCloseAssign is shorted from, hardware valve close assignment configuration property.

The hwValveCloseAssign configuration is assigning a digital hardware output the heat actuator object. This hardware is used in floating configuration for the close direction.

1.3.3.2.3 UCPThwValveOpenAssign

UCPThwValveOpenAssign is shorted from, hardware valve open assignment configuration property. The hwValveOpenAssign configuration is assigning a digital hardware output the heat actuator object.

The following list describe the typically relation between the hardware and the software objects. The outputs are not fixed coded in the software to a specific hardware connector and can be assigned to another output due to flexibility and the possibility to use either digital, analog or floating control of the actuators.

Output #	24Vac connector #	Used in object
1	57.1	Vent 1 Open
2	57.2	Vent 2 Open
3	58.1	Vent 1 Close
4	58.2	Vent 2 Close
5	66.1	Heat 1
6	66.2	Heat 2
7	62.1	Cool 1
8	62.2	Cool 2

1.3.3.2.4 UCPTvalveCloseT

UCPTvalveCloseT is shorted from, valve close time configuration property.

The UCPTvalveCloseT configuration is specifying the speed the actuator can close the valve with. The closing time is used in the algorithm to compensate for the slow actuator speed and make sure that the actuator control the valve best possible. Consult the actuator documentation for getting the correct value.

1.3.3.2.5 UCPTvalveMinPulse

UCPTvalveMinPulse is shorted from, valve minimum pulse length configuration property.

The UCPTvalveMinPulse configuration is specifying the minimum pulse length possible, getting a water flow in the valve, even if the actuator are not opening 100%. If you can find this value, the algorithm can calculate a better control output. This will also give possibility to use less water, when compensating for cold windows surfaces.

1.3.3.2.6 UCPTvalveMinPulseLimit

UCPTvalveMinPulseLimit is shorted from, valve minimum pulse limit configuration property. The UCPTvalveMinPulseLimit configuration property is specifying the input level to the object where the software change from one algorithm to another. Under the limit property level, is used a fixed valve ON time and the pause is calculated. Over the property limit level, is used a calculated ON time and a calculated pause time.

1.3.3.2.7 UCPTvalveOpenT

UCPTvalveOpenT is shorted from, valve open time configuration property.

The UCPTvalveOpenT configuration is specifying the speed the actuator can open the valve with. The opening time is used in the algorithm to compensate for the slow actuator speed and make sure that the actuator control the valve best possible. Consult the actuator documentation for getting the correct value

1.3.3.2.8 UCPTvalveType

UCPTvalveType is shorted from, valve actuator type configuration property.

The following selections are possible:

UCPTvalveType	Description
VT_DIGITAL NORMAL CLOSED	24Vac ON/OFF, normal closed actuator
VT_DIGITAL NORMAL OPEN	24Vac ON/OFF, normal open actuator
VT_ANALOG NORMAL CLOSED	0 to 10Vdc, normal closed actuator
VT_ANALOG NORMAL OPEN	0 to 10Vdc, normal open actuator
VT_FLOATING	24Vac Open and 24Vac Close, drive time

1.3.4 Cool Actuator (3:20011), 2 objects

The following describes the cool actuator object. The object is used to control a hardware actuator for cool valves. The object can be used on both digital, analog and flowting actuators. The hardware output is either 24Vac ON/OFF or a 0 til 10Vdc signal with fixed 24Vac supply.

Cool #	AC#	0-10#	Name in LonMaker list
1	62.1	60.1	Cool_1
2	62.2	60.2	Cool_2

Table 3 The cool software hardware relation

COOL			
59 1 0Vdc	60 1 C+dc	61 1 0Vac	62 1 C+ac
59 2 0Vdc	60 2 C+dc	61 2 0Vac	62 2 C+ac

000

Figure 9 The cool hardware outputs

Figure 37 The cool actuator object

💞 LonMaker Browser - Untitled 📃 🔲				×
Eile Edit Browse Help				
Network Variable	Config Prop	Mon	Value	^
	SCPTovrValue	N	100,000	
	UCPThwValveCloseAssign	N	0	
	UCPThwValveOpenAssign	N	7	
	UCPTvalveCloseT	N	360,0	
	UCPTvalveMinPulse	N	240,0	
	UCPTvalveMinPulseLimit	N	30,0	
	UCPTvalveOpenT	N	300,0	
	UCPTvalveType	N	VT_DIGITAL_NORMAL_CLOSED	
nviLevel		N	0,000	1
				-
Ready 1				

Figure 38 Browsing the cool actuator object

The cool actuator object receive a control level in % and with help from the configuration properties a calculation is made, to decide how to actuate the hardware outputs.

When the object is used as a digital actuator control, the hardware output is turned ON and OFF with an interval related to the control level in %, giving approximately an average flow trough the valve matching the control input % level.

When the control input is under the valve minimum pulse limit level, the algorithm will calculate the pause length between the ON pulses and use a fixed ON length pulse using the valve minimum pulse with a security margin.

When the control input is over the valve minimum pulse limit level, the algorithm will calculate a duty cycle modulation using the valve open, close and minimum time compensating for the slow reaction of the actuator. This will generate an average flow trough the valve, matching the control input % level.

When the object is used as an analog actuator control, the hardware output is modulated to a 0 to 10 Vdc signal related to the control input in %, giving approximately a flow trough the valve matching the control input % level. In this configuration the digital hardware output can be configured as the 24Vac supply for the 0 to 10 Vdc actuator.

1.3.4.1 Network Variable Interface

Variable name	Default Value	Туре	Description
nviValueLevel	0 %	SNVT_lev_percent (82)	Input control value

1.3.4.1.1 nviValueLevel

This input network variable is the control level for the hardware actuator. It will control the actuator level in % of the full actuator range from 0 to 100%.

1.3.4.2 Configuration Properties

Configuration	Default Value	Description
SCPTovrValue (33)	100 %	SNVT overwrite value
UCPThwValveCloseAssign (3:71)	0	Select output hardware
UCPThwValveOpenAssign (3:70)	7 or 8	Select output hardware
UCPTvalveCloseT (3:43)	360 sec.	Actuator closing time
UCPTvalveMinPulse (3:44)	240 sec.	Minimum reaction time
UCPTvalveMinPulseLimit (3:72)	30 sec.	Level between algorithms
UCPTvalveOpenT (3:42)	300 sec.	Actuator opening time
UCPTvalveType (3:73)	VT_DIGITAL NORMAL	Actuator type selection
	CLOSED	

1.3.4.2.1 SCPTovrValue

This configuration property set the level on the hardware output, when the object is in override mode. The variable type is a SNVT_lev_percent (82). The value is used on the hardware output.

1.3.4.2.2 UCPThwValveCloseAssign

UCPThwValveCloseAssign is shorted from, hardware valve close assignment configuration property.

The hwValveCloseAssign configuration is assigning a digital hardware output the cool actuator object. This hardware is used in floating configuration for the close direction.

1.3.4.2.3 UCPThwValveOpenAssign

UCPThwValveOpenAssign is shorted from, hardware valve open assignment configuration property. The hwValveOpenAssign configuration is assigning a digital hardware output the heat actuator object.

The following list describe the typically relation between the hardware and the software objects. The outputs are not fixed coded in the software to a specific hardware connector and can be assigned to another output due to flexibility and the possibility to use either digital, analog or floating control of the actuators.

Output #	24Vac connector #	Used in object
1	57.1	Vent 1 Open
2	57.2	Vent 2 Open
3	58.1	Vent 1 Close
4	58.2	Vent 2 Close
5	66.1	Heat 1
6	66.2	Heat 2
7	62.1	Cool 1
8	62.2	Cool 2

1.3.4.2.4 UCPTvalveCloseT

UCPTvalveCloseT is shorted from, valve close time configuration property.

The UCPTvalveCloseT configuration is specifying the speed the actuator can close the valve with. The closing time is used in the algorithm to compensate for the slow actuator speed and make sure that the actuator control the valve best possible. Consult the actuator documentation for getting the correct value.

1.3.4.2.5 UCPTvalveMinPulse

UCPTvalveMinPulse is shorted from, valve minimum pulse length configuration property.

The UCPTvalveMinPulse configuration is specifying the minimum pulse length possible, getting a water flow in the valve, even if the actuator are not opening 100%. If you can find this value, the algorithm can calculate a better control output. This will also give possibility to use less water, when compensating for cold windows surfaces.

1.3.4.2.6 UCPTvalveMinPulseLimit

UCPTvalveMinPulseLimit is shorted from, valve minimum pulse limit configuration property. The UCPTvalveMinPulseLimit configuration property is specifying the input level to the object where the software change from one algorithm to another. Under the limit property level, is used a fixed valve ON time and the pause is calculated. Over the property limit level, is used a calculated ON time and a calculated pause time.

1.3.4.2.7 UCPTvalveOpenT

UCPTvalveOpenT is shorted from, valve open time configuration property.

The UCPTvalveOpenT configuration is specifying the speed the actuator can open the valve with. The opening time is used in the algorithm to compensate for the slow actuator speed and make sure that the actuator control the valve best possible. Consult the actuator documentation for getting the correct value

1.3.4.2.8 UCPTvalveType

UCPTvalveType is shorted from, valve actuator type configuration property.

The following selections are possible:

UCPTvalveType	Description
VT_DIGITAL NORMAL CLOSED	24Vac ON/OFF, normal closed actuator
VT_DIGITAL NORMAL OPEN	24Vac ON/OFF, normal open actuator
VT_ANALOG NORMAL CLOSED	0 to 10Vdc, normal closed actuator
VT_ANALOG NORMAL OPEN	0 to 10Vdc, normal open actuator
VT_FLOATING	24Vac Open and 24Vac Close, drive time

1.3.5 Ventilation Actuator (3:20011), 2 objects

The following describes the ventilation actuator object. The object is used to control a hardware actuator for ventilation actuators. The object can be used on both digital, analog and flowting actuators. The hardware output is either 24Vac ON/OFF or a 0 til 10Vdc signal with fixed 24Vac supply.

Vent #	AC#	0-10 volt 0 volt #	0-10 volt out	Name in LonMaker list
1	57.1 open	54.1	55.1	Vent_1
1	58.1 close			
2	57.2 open	54.2	55.2	Vent_2
2	58.2 close			

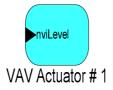


Figure 39 The ventilation actuator object

VENTILATION

55 2 V+dc 55 1 V+dc 56 2 DVac 56 1 DVac 57 2 V1+ac 57 1 V1+ac 58 2 V2+ac 58 1 V2+ac	54 2. 0Vdc	54 1 0Vdc
	55 2 V+dc	55 1 V+dc
	56.2 0Vac	56 1 0Vac
	57 2 V1+ас	57 1 V1+ас
	58 2 V2+ac	58 1 V2+ac

Figure 10 The Ventilation hardware outputs

🖥 LonMaker Browser - Untitled							
<u>File E</u> dit <u>B</u> rowse <u>H</u> elp							
B							
Network Variable	Config Prop	Mon	Value				
	SCPTovrValue	N	100,000				
	UCPThwValveCloseAssign	N	1				
	UCPThwValveOpenAssign	N	3				
	UCPTvalveCloseT	N	360,0				
	UCPTvalveMinPulse	N	240,0				
	UCPTvalveMinPulseLimit	N	30,0				
	UCPTvalveOpenT	N	300,0				
	UCPTvalveType	N	VT_DIGITAL_NORMAL_CLOSED				
nviLevel		N	100,000				
Ready			1	1			

Figure 40 Browsing the ventilation actuator object

The ventilation actuator object receive a control level in % and with help from the configuration properties a calculation is made, to decide how to actuate the hardware outputs.

When the object is used as a digital actuator control, the hardware output is turned ON and OFF with an interval related to the control level in %, giving approximately an average flow trough the valve matching the control input % level.

When the control input is under the valve minimum pulse limit level, the algorithm will calculate the pause length between the ON pulses and use a fixed ON length pulse using the valve minimum pulse with a security margin.

When the control input is over the valve minimum pulse limit level, the algorithm will calculate a duty cycle modulation using the valve open, close and minimum time compensating for the slow reaction of the actuator. This will generate an average flow trough the valve, matching the control input % level.

When the object is used as an analog actuator control, the hardware output is modulated to a 0 to 10 Vdc signal related to the control input in %, giving approximately a flow trough the valve matching the control input % level. In this configuration the digital hardware output can be configured as the 24Vac supply for the 0 to 10 Vdc actuator.

1.3.5.1 Network Variable Interface

Variable name	Default Value	Туре	Description
nviValueLevel	0 %	SNVT_lev_percent (82)	Input control value

1.3.5.1.1 nviValueLevel

This input network variable is the control level for the hardware actuator. It will control the actuator level in % of the full actuator range from 0 to 100%.

1.3.5.2 Configuration Properties

Configuration	Default Value	Description
SCPTovrValue (33)	100 %	SNVT overwrite value
UCPThwValveCloseAssign (3:71)	0	Select output hardware
UCPThwValveOpenAssign (3:70)	7 or 8	Select output hardware
UCPTvalveCloseT (3:43)	360 sec.	Actuator closing time
UCPTvalveMinPulse (3:44)	240 sec.	Minimum reaction time
UCPTvalveMinPulseLimit (3:72)	30 sec.	Level between algorithms
UCPTvalveOpenT (3:42)	300 sec.	Actuator opening time
UCPTvalveType (3:73)	VT_DIGITAL NORMAL	Actuator type selection
	CLOSED	

1.3.5.2.1 SCPTovrValue

This configuration property set the level on the hardware output, when the object is in override mode. The variable type is a SNVT_lev_percent (82). The value is used on the hardware output.

1.3.5.2.2 UCPThwValveCloseAssign

UCPThwValveCloseAssign is shorted from, hardware valve close assignment configuration property.

The hwValveCloseAssign configuration is assigning a digital hardware output the ventilation actuator object. This hardware is used in floating configuration for the close direction.

1.3.5.2.3 UCPThwValveOpenAssign

UCPThwValveOpenAssign is shorted from, hardware valve open assignment configuration property. The hwValveOpenAssign configuration is assigning a digital hardware output the heat actuator object.

The following list describe the typically relation between the hardware and the software objects. The outputs are not fixed coded in the software to a specific hardware connector and can be assigned to another output due to flexibility and the possibility to use either digital, analog or floating control of the actuators.

Output #	24Vac connector #	Used in object
1	57.1	Vent 1 Open
2	57.2	Vent 2 Open
3	58.1	Vent 1 Close
4	58.2	Vent 2 Close
5	66.1	Heat 1
6	66.2	Heat 2
7	62.1	Cool 1
8	62.2	Cool 2

1.3.5.2.4 UCPTvalveCloseT

UCPTvalveCloseT is shorted from, valve close time configuration property.

The UCPTvalveCloseT configuration is specifying the speed the actuator can close the valve with. The closing time is used in the algorithm to compensate for the slow actuator speed and make sure that the actuator control the valve best possible. Consult the actuator documentation for getting the correct value.

1.3.5.2.5 UCPTvalveMinPulse

UCPTvalveMinPulse is shorted from, valve minimum pulse length configuration property.

The UCPTvalveMinPulse configuration is specifying the minimum pulse length possible, getting a water flow in the valve, even if the actuator are not opening 100%. If you can find this value, the algorithm can calculate a better control output. This will also give possibility to use less water, when compensating for cold windows surfaces.

1.3.5.2.6 UCPTvalveMinPulseLimit

UCPTvalveMinPulseLimit is shorted from, valve minimum pulse limit configuration property. The UCPTvalveMinPulseLimit configuration property is specifying the input level to the object where the software change from one algorithm to another. Under the limit property level, is used a fixed valve ON time and the pause is calculated. Over the property limit level, is used a calculated ON time and a calculated pause time.

1.3.5.2.7 UCPTvalveOpenT

UCPTvalveOpenT is shorted from, valve open time configuration property.

The UCPTvalveOpenT configuration is specifying the speed the actuator can open the valve with. The opening time is used in the algorithm to compensate for the slow actuator speed and make sure that the actuator control the valve best possible. Consult the actuator documentation for getting the correct value

1.3.5.2.8 UCPTvalveType

UCPTvalveType is shorted from, valve actuator type configuration property.

The following selections are possible:

UCPTvalveType	Description
VT_DIGITAL NORMAL CLOSED	24Vac ON/OFF, normal closed actuator
VT_DIGITAL NORMAL OPEN	24Vac ON/OFF, normal open actuator
VT_ANALOG NORMAL CLOSED	0 to 10Vdc, normal closed actuator
VT_ANALOG NORMAL OPEN	0 to 10Vdc, normal open actuator
VT_FLOATING	24Vac Open and 24Vac Close, drive time

1.3.6 Indoor Air Quality Controller (3:20018), 2 objects

The following section is describing the indoor air controller software function object implemented in the Comfort and Light Controller Lonbox PZM4146.

The object is normally used controlling ventilation with reference to a measured CO2 level and a setpoint configured in the controller object.

The ventillation control output can be combined with the control output of a Space Comfort Controller using an Analog Function to select either the control value with the largest level, or the average of the two control values.

Figure 41 The indoor air quality controller object

💞 LonMaker Bro	wser - Untitled			×
<u>File E</u> dit <u>B</u> rowse	e <u>H</u> elp			
F		■ 🛟	66 1 0,0 ‡	
Network Variable	Config Prop	Mon	Value	*
	SCPTmaxSendTime	N	0,0	
	UCPTiaqlTime	N	0,0	
	UCPTiaqSetpoint	N	0;0;0	
	UCPTminAirFlow	N	0,000;0,000;0,000	
	UCPTproportionalRange	N	0	
nviOccupancy		N	OC_OCCUPIED	
nviSpaceIAQ		N	65535	
nvoEffectSetpt		N	0	
nvolAQControl		N	0,000	
				-
Ready				

Figure 42 Browsing the indoor air quality controller object

1.3.6.1 Network Variable Interface

Variable name	Default Value	Туре	Description
nviOccupancy	OC_UNOCCUPIED	SNVT_occupancy (109)	Occupancy input status
nviSpaceIAQ	65353	SNVT_ppm (29)	Air quality input level
nvoEffectSetpt	0	SNVT_ppm (29)	Output the current
			effective setpoint
nvoIAQcontrol	0,000	SNVT_lev_percent (82)	Control output for actuator

1.3.6.1.1 nviOccupancy

Occupancy status input value, provides the occupancy status for the area where the controller is used.

1.3.6.1.2 nviSpaceIAQ

Air quality input from the air quality sensor, could be a CO2 sensor.

1.3.6.1.3 nvoEffectSetpt

The nvoEffectSetpt variable will reflect the current effective setpoint.

1.3.6.1.4 nvoIAQcontrol

The nvoIAQcontrol variable is the output from the controller object and is used to control an actuator object.

1.3.6.2 Configuration Properties

Configuration	Default Value	Description
SCPTmaxSendTime		Maximum send time
UCPTiaqITime		The regulator integration
		time (<i>i</i>)
UCPTiaqSetpoint		PPM setpoint
UCPTminAirFlow	0,000;0,000;0,000	Minimum countrol output
UCPTproportionalRange		The regulator proportional
		range (p).

1.3.6.2.1 SCPTmaxSendTime

This configuration property set the value for the send heartbeat. Maximum period of time that expires before the object automatically transmits the present value of the nvoIAQcontrol level output.

1.3.6.2.2 UCPTiaqITime

Integration time for the ait quality PI regulator.

1.3.6.2.3 UCPTiaqSetpoint

Regulator air quality (ppm) setpoint for each of the occupancy states OCCUPIED, STANDBY and UNOCCUPIED, other states use same setpoint as specified for UNOCCUPIED.

1.3.6.2.4 UCPTminAirFlow

Minimum countrol output level (air flow) for each of the occupancy states OCCUPIED, STANDBY and UNOCCUPIED, other states use same minimum air flow as specified for UNOCCUPIED.

1.3.6.2.5 UCPTproportionalRange

Proportional range for the air quality PI regulator.

Sunblind profiles:

The following list is describing the sunblind software functions implemented in the Comfort and light controller Lonbox PZM4146.

1.3.7 Sunblind Actuator (3:20000), 2 objects

The sunblind actuator object is controlling the hardware output for the sunblind actuator.

Actuator #	Ma direction	Mb direction	Name in LonMaker list
1	16.1	17.1	SblndActuator_1
2	16.2	17.2	SblndActuator_2

13.2 I /+dc	14 2 /0Vdc	15.2 N/	162 Ma	17.2 Mb	18.2 N/
13 1 I /+dc	14 1 /0Vdc	15 1 N/	16 1 Ma	17 1 Mb	18 1 N/
SUPPLY MOTOR SUNBLINDS					

Figure 11 The sunblibd hardware outputs

Please consult the hardware manual for more details about AC or DC actuators.

Figure 43 The sunblind actuator object

IonMaker Browser - Untitled File Edit Browse				
		■ ‡	0,0	_
Network Variable	Config Prop	Mon	Value	
	SCPTmaxSendTime	N	0,0	
	SCPTminSendTime	N	2,0	
	UCPTsunblindCloseTime	N	0,5	
	UCPTsunblindOpenTime	N	0,5	
nviSbIndSetng		N	SET_OFF 0,0 0,00	
nvoPositionFb		N	0,0	
				-
Ready	•	-	1	

Figure 44 Browsing the sunblind actuator object

1.3.7.1 Network Variable Interface

Variable name	Default Value	Туре	Description
nviSblndSetng	SET_OFF 0,0 0,00	SNVT_setting (117)	Setting control
nvoPositionFb	0,0	SNVT_lev_cont	Output the position

1.3.7.1.1 nviSblndSetting

Control input for the sunblind actuator. The variable is a SNVT_setting, this is at structure.

The structure: (function, setting, rotation)

1.3.7.1.2 nvoPositionFb

This output variable is used to display the position of the sunblind actuator. The variable is a SNVT_lev_cont, (% of full level).

1.3.7.2 Configuration Properties

Configuration	Default Value	Description
SCPTmaxSendTime (49)	0	Maximum send time
SCPTminSendTime (52)	2	Minimum send time
UCPTsunblindCIoseTime	0,5	Drive time close
UCPTsunblindOpenTime	0,5	Drive time open

1.3.7.2.1 SCPTmaxSendTime

This configuration property set the value for the send heartbeat. Maximum period of time that expires before the object automatically transmits the present value of the nvoPositionFb level output.

1.3.7.2.2 SCPTminSendTime

This configuration property set the value for the minimum send time. Minimum period between output NV transmissions (maximum transmission rate).

1.3.7.2.3 UCPTsunblindCloseTime

UCPTsunblindCloseTime is shorted from, sunblind close time configuration property.

The UCPTsunblindCloseTime configuration is specifying the speed the actuator can close the actuatorevalve and make sure that the actuator control the valve best possible. Consult the actuator documentation for getting the correct value.

1.3.7.2.4 UCPTsunblindOpenTime

UCPTsunblindOpenTime is shorted from, sunblind open time configuration property.

The UCPTsunblindOpenTime configuration is specifying the speed the actuator can open the valve with. The opening time is used in the algorithm to compensate for the slow actuator speed and make sure that the actuator control the valve best possible. Consult the actuator documentation for getting the correct value

1.4 Converter Profiles

The following list is describing the Converter software functions implemented in the Comfort and light controller Lonbox PZM4146.

1.4.1 Switch to setting converter (3:20016) 6 objects

The following section is describing the gateway software functions implemented in the Comfort and light controller Lonbox PZM4146 for interfacing units only sending out switch variables to setting outputs.

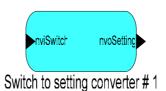


Figure 45 The switch to setting convertor

💞 LonMaker Browser - Untitled 📃 📃				IX
<u>File E</u> dit <u>B</u> rowse	e <u>H</u> elp			
	۵ 🔁 🕐 📇		[] : : 2.5	
Network Variable	Config Prop	Mon	Value	
	SCPTstepValue	N	2,5	
nviSwitch		N	0,0 0	
nvoSetting		N	SET_OFF 0,0 0,00	
				-
Ready			1	_//

Figure 46 Browsing the switch to setting object

1.4.1.1 Network Variable Interface

Variable name	Default Value	Туре	Description
nviSwitch	0,0 0	SNVT_switch (95)	Switch input
nvoSetting	SET_OFF 0,0 0,00	SNVT_setting (117)	Setting control output

1.4.1.1.1 nviSwitch

This input network variable is used to source the converter object with level and state from the switch variable SNVTswitch.

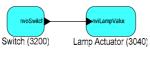
1.4.1.1.2 nvoSetting

This variable is the converted output from the switch input.

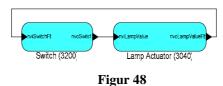
1.4.1.2 Configuration Properties

Configuration	Default Value	Description
SCPstepValue	2,5	Step size selection

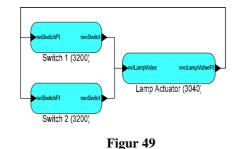
1.4.1.2.1 SCPstepValue


Step size selection configuration property is used the select how big steps is taken when sending out the seiitng variable.

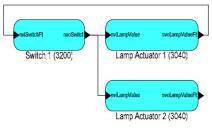
2 Applications and bindings


2.1 Manual Control, Light Bindings

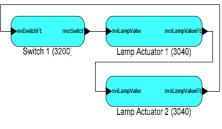
2.1.1 Simple on and off.

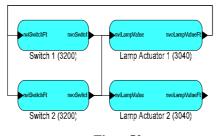


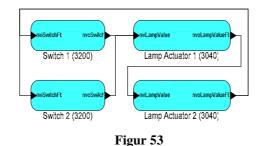
Figur 47


2.1.2 Simple on and off with feed back.

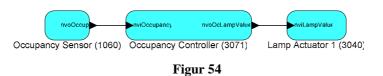
2.1.3 Multi on and off with feed back.


2.1.4 Simple on and off with multi actuators 1.

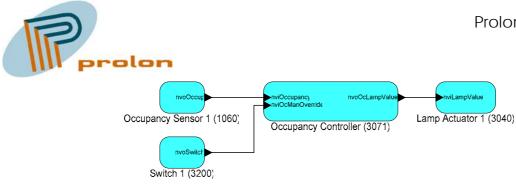

2.1.5 Simple on and off with multi actuators 2.


Figur 51

2.1.6 Multi on and off with multi actuators 1.

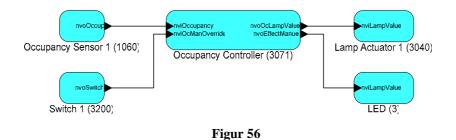


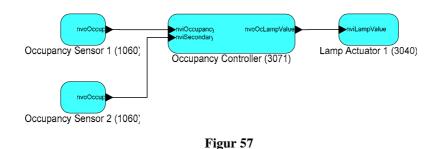
2.1.7 Multi on and off with multi actuators 2.

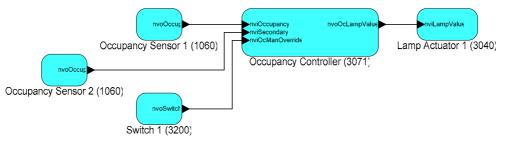


2.2 Occupancy automatic, Light Bindings

2.2.1 Occupancy on off.

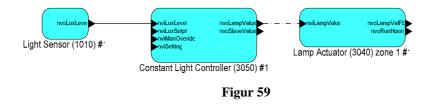

2.2.2 Occupancy on off, with manual override.


Figur 55

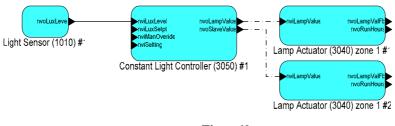

2.2.3 Occupancy on off, manual override and manual control LED.

2.2.4 Occupancy and neighbour occupancy on off.

2.2.5 Occupancy, neighbour occupancy on off and manual override.

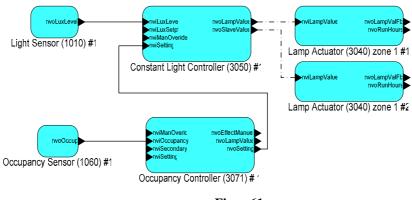


Figur 58

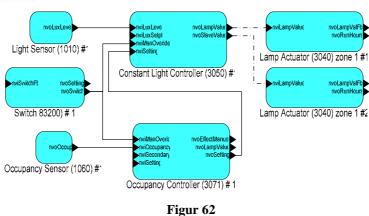


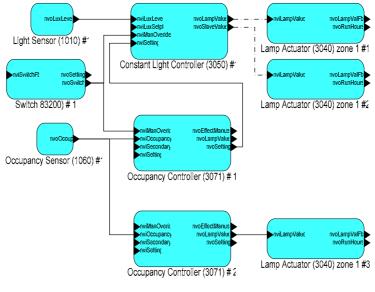
2.3 Constant light automatic, Light Bindings

2.3.1 Constant light basis automatic



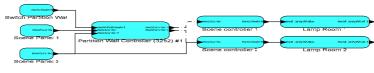
2.3.2 Constant light with slave output


2.3.3 Constant light and occupancy control


2.3.4 Constant light, occupancy and manual control

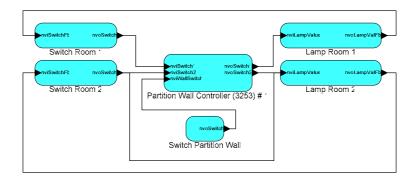
2.3.5 Constant light, dual occupancy and a manual control

TODO: Describe reason for binding (different hold time for light)

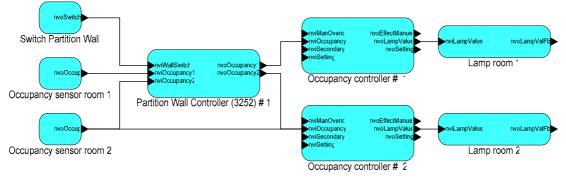


Figur 63

Prolon Control Systems

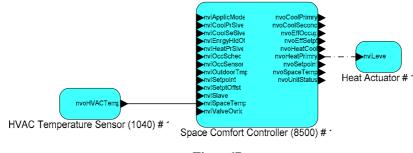


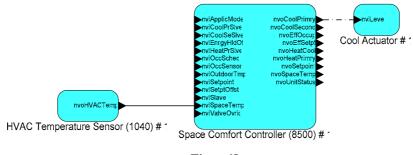
2.3.6 Partition Wall and scene



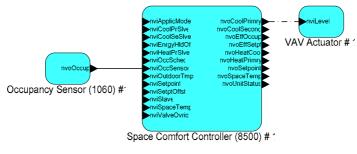
2.3.7 Partition Wall and switch

2.3.8 Partition wall and occupancy

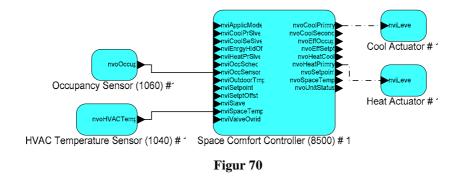


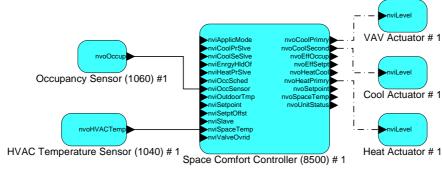

2.4 Space Comfort

2.4.1 Heating



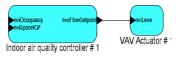
2.4.2 Cooling


2.4.3 Ventilation with occupancy control



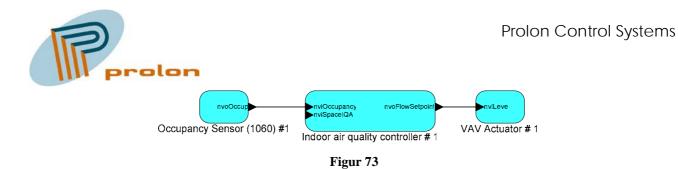
2.4.4 Heat and cool with occupancy automatic

2.4.5 Heat, cool and ventilation with occupancy automatic



2.5 Indoor air quality

2.5.1 CO2 controlled ventilation


TODO: Add analog sensor

Figur 72

2.5.2 CO2 controlled ventilation with occupancy automatic

TODO: Add analog sensor

2.5.3 CO2 controlled ventilation combined with space comfort controller

TODO: insert drawing (bind nvoEffectOcc from space comfort to nviOccupancy)

3 Figure list

•	
Figure 1 The main application for PZM4146	4
Figure 2 The scene controller object	5
Figure 3. Browsing the scene controller object	6
Figure 4 The occupancy sensor object	10
Figure 5 Browsing the occupancy sensor object	11
Figure 6 The Occupancy controller object	14
Figure 7 Browsing the occupancy controller object	15
Figure 8 The Partition wall controller object	18
Figure 9 Browsing the partition wall controller object	19
Figure 10 The digital function object	22
Figure 11 Browsing the digital function object	23
Figure 12 AND Gate	25
Figure 13 NAND Gate	25
Figure 14 OR gate	26
Figure 15 NOR Gate	26
Figure 16 Latch	27
Figure 17 Latch inverted out	27
Figure 18 Relay gate	28
Figure 19 Relay inverted output	28
Figure 20 The analog function object	31
Figure 21 Browsing the analog function object	32
Figure 22 The light sensor object	36
Figure 23 Browsing the light sensor object	37
Figure 24 The lamp actuator object	39
Figure 25 Browsing the lamp actuator object	40
Figure 26 Typically use of the lamp actuator object	42
Figure 27 The constant light controller object	43
Figure 28 Browsing the constant light controller object	44
Figure 29 Understanding the light slave output	46
Figure 30 Constant light controller typically use	48
Figure 31 The temperature sensor object	49
Figure 32 Browsing the temperature sensor object	50
Figure 33 The space comfort controller	52
Figure 34 Browsing the space comfort controller object	53
Figure 35 The heat actuator object	65
Figure 36 Bowsing the heat actuator object	66
Figure 37 The cool actuator object	70
Figure 38 Browsing the cool actuator object	71
Figure 39 The ventilation actuator object	75
Figure 40 Browsing the ventilation actuator object	76
Figure 41 The indoor air quality controller object	80
Figure 42 Browsing the indoor air quality controller object	80
Figure 43 The sunblind actuator object	82
Figure 44 Browsing the sunblind actuator object	83
Figure 45 The switch to setting convertor	85
Figure 46 Browsing the switch to setting object	85

Figur 47	87
Figur 48	87
Figur 49	87
Figur 50	87
Figur 51	88
Figur 52	88
Figur 53	88
Figur 54	88
Figur 55	89
Figur 56	90
Figur 57	90
Figur 58	90
Figur 59	91
Figur 60	91
Figur 61	91
Figur 62	92
Figur 63	92
Figur 64	93
Figur 65	93
Figur 66	93
Figur 67	94
Figur 68	94
Figur 69	94
Figur 70	95
Figur 71	95
Figur 72	95
Figur 73	96